

Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832)

R&S®NRP Power Meter Family Specifications

Data Sheet | 10.00

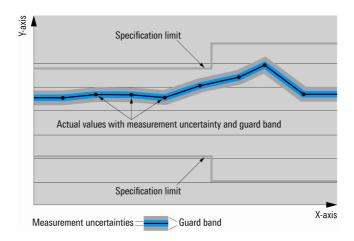
CONTENTS

Definitions	4
Overview of the R&S [®] NRP-Zxx power sensors	5
Specifications in brief of the R&S®NRP-Zxx power sensors	6
Universal power sensors in R&S [®] Smart Sensor Technology	9
R&S®NRP-Z11/-Z21 universal power sensors	9
R&S [®] NRP-Z31 universal power sensor	12
R&S®NRP-Z41/-Z61 universal power sensors	15
R&S®NRP-Z211/-Z221 universal power sensors	18
R&S [®] NRP-Z22 universal power sensor	20
R&S [®] NRP-Z23 universal power sensor	22
R&S®NRP-Z24 universal power sensor	24
Additional characteristics of the R&S®NRP-Z11/-Z21/-Z31/-Z41/-Z61/-Z221/-Z22/-Z23/-Z24 universal power sensors	26
Power rating of the R&S®NRP-Z22/-Z23/-Z24	29
Wideband power sensors in R&S [®] Smart Sensor Technology	30
R&S [®] NRP-Z81/-Z85/-Z86 wideband power sensors	30
Additional characteristics of the R&S®NRP-Z81/-Z85/-Z86 wideband power sensors	33
Thermal power sensors in R&S [®] Smart Sensor Technology	36
R&S®NRP-Z51/-Z52/-Z55/-Z56/-Z57 thermal power sensors	36
R&S®NRP-Z58 thermal power sensor	37
Additional characteristics of the R&S®NRP-Z51/-Z52/-Z55/-Z56/-Z57/-Z58 thermal power sensors	38
Average power sensors in R&S [®] Smart Sensor Technology	40
R&S®NRP-Z91 average power sensor	40
R&S®NRP-Z92 average power sensor	42
Additional characteristics of the R&S®NRP-Z91/-Z92 average power sensors	
Power rating of the R&S®NRP-Z92	45
Level control sensors in R&S®Smart Sensor Technology	46
R&S®NRP-Z28 level control sensor	46
R&S®NRP-Z98 level control sensor	49
Additional characteristics of the R&S®NRP-Z28/-Z98 level control sensors	51
Power sensor modules in R&S®Smart Sensor Technology	54
R&S®NRP-Z27/-Z37 power sensor modules	54
Additional characteristics of the R&S®NRP-Z27/-Z37 power sensor modules	55
Accessories for sensors	57
R&S®NRP-Z2 extension cables	57
R&S®NRP-Z3 active USB adapter cable	58
R&S®NRP-Z4 passive USB adapter cable	58
R&S®NRP-Z5 USB sensor hub	59

R&S®NRP2 base unit	60
Options for the R&S®NRP2 base unit	62
R&S®NRP-B2 second sensor input	62
R&S®NRP-B5 third and fourth sensor input	62
R&S®NRP-B6 rear panel sensor inputs	62
R&S®NRP-B7 sensor check source	62
General data	63
Appendix	64
Reading the uncertainty of diode power sensors for relative power measurements	64
Ordering information	65
Footnotes	67

Definitions

Product data applies under the following conditions:


- Three hours storage at the expected operating temperature followed by 30 minutes warm-up, unless otherwise stated
- · Specified environmental conditions met
- · Recommended calibration interval adhered to
- · All internal automatic adjustments performed, if applicable

Specifications with limits

Describe warranted product performance by means of a range of values for the specified parameter. These specifications are marked with limiting symbols such as <, \leq , >, \geq , \pm , or descriptions such as maximum and minimum.

Specifications in normal print refer to parameters where compliance is ensured by the design or derived from the measurement of related parameters.

Specifications in **bold** print are 100 % tested. Test limits have been narrowed by guard bands to take into account measurement uncertainties, drift and aging, if applicable.

Specifications without limits

Describe warranted product performance by means of a representative value for the specified parameter. Limits are omitted whenever they are not relevant for the specification (e.g. dimensional data).

Typical values (typ.)

Represent the population mean for the given parameter, derived from the design and/or production testing. Typical values are not warranted by Rohde & Schwarz.

Limits of uncertainty

Expanded uncertainties with a coverage factor of 2, calculated from the test assembly specifications and the modeled behavior of the sensor, including environmental conditions, aging, wear and tear, if applicable. The given values represent limits of uncertainty that are met by the Rohde & Schwarz instrument after calibration at a production or service site. Limits of uncertainty (in italics) are defined in EN 60359 and have been determined in line with the rules of the Guide to the Expression of Uncertainty in Measurement (GUM).

Overview of the R&S®NRP-Zxx power sensors

Sensor type R&S [®]	Frequency range	Power range, max. average power / peak envelope power	Connector type
Universal power	er sensors	· · · · · · · · · · · · · · · · · · ·	
NRP-Z11	10 MHz to 8 GHz	200 pW to 200 mW (–67 dBm to +23 dBm) max. 400 mW (AVG) / 1 W (PK, 10 µs)	N
NRP-Z21	10 MHz to 18 GHz	200 pW to 200 mW (–67 dBm to +23 dBm) max. 400 mW (AVG) / 1 W (PK, 10 μs)	N
NRP-Z31	10 MHz to 33 GHz	200 pW to 200 mW (–67 dBm to +23 dBm) max. 400 mW (AVG) / 1 W (PK, 10 µs)	3.50 mm
NRP-Z41	50 MHz to 40 GHz	200 pW to 100 mW (–67 dBm to +20 dBm) max. 200 mW (AVG) / 1 W (PK, 10 μs)	2.92 mm
NRP-Z61	50 MHz to 50 GHz	200 pW to 100 mW (–67 dBm to +20 dBm) max. 200 mW (AVG) / 1 W (PK, 10 μs)	2.40 mm
NRP-Z211	10 MHz to 8 GHz	1.0 nW to 100 mW (–60 dBm to +20 dBm) max. 400 mW (AVG) / 2 W (PK, 10 μs)	N
NRP-Z221	10 MHz to 18 GHz	1.0 nW to 100 mW (–60 dBm to +20 dBm) max. 400 mW (AVG) / 2 W (PK, 10 μs)	N
NRP-Z22	10 MHz to 18 GHz	2 nW to 2 W (-57 dBm to +33 dBm) max. 3 W (AVG) / 10 W (PK, 10 µs)	N
NRP-Z23	10 MHz to 18 GHz	20 nW to 15 W (–47 dBm to +42 dBm) max. 18 W (AVG) / 100 W (PK, 10 µs)	N
NRP-Z24	10 MHz to 18 GHz	60 nW to 30 W (–42 dBm to +45 dBm) max. 36 W (AVG) / 300 W (PK, 10 µs)	N
Wideband pow	er sensors		
NRP-Z81	50 MHz to 18 GHz	1 nW to 100 mW (-60 dBm to +20 dBm) max. 200 mW (AVG) / 1 W (PK, 1 µs)	N
NRP-Z85	50 MHz to 40 GHz	1 nW to 100 mW (-60 dBm to +20 dBm) max. 200 mW (AVG) / 1 W (PK, 1 µs)	2.92 mm
NRP-Z86 model .40	50 MHz to 40 GHz	1 nW to 100 mW (-60 dBm to +20 dBm) max. 200 mW (AVG) / 1 W (PK, 1 µs)	2.40 mm
NRP-Z86 model .44	50 MHz to 44 GHz	1 nW to 100 mW (-60 dBm to +20 dBm) max. 200 mW (AVG) / 1 W (PK, 1 µs)	2.40 mm
Thermal power	r sensors		
NRP-Z51	DC to 18 GHz	300 nW to 100 mW (-35 dBm to +20 dBm)	N
model .03		max. 300 mW (AVG) / 20 W (PK, 1 μs)	
NRP-Z52	DC to 33 GHz	300 nW to 100 mW (–35 dBm to +20 dBm) max. 300 mW (AVG) / 10 W (PK, 1 μs)	3.50 mm
NRP-Z55 model .03	DC to 40 GHz	300 nW to 100 mW (–35 dBm to +20 dBm) max. 300 mW (AVG) / 10 W (PK, 1 μs)	2.92 mm
NRP-Z55 model .04	DC to 44 GHz	300 nW to 100 mW (–35 dBm to +20 dBm) max. 300 mW (AVG) / 10 W (PK, 1 μs)	2.92 mm
NRP-Z56	DC to 50 GHz	300 nW to 100 mW (–35 dBm to +20 dBm) max. 300 mW (AVG) / 10 W (PK, 1 μs)	2.40 mm
NRP-Z57	DC to 67 GHz	300 nW to 100 mW (–35 dBm to +20 dBm) max. 300 mW (AVG) / 10 W (PK, 1 μs)	1.85 mm
NRP-Z58	DC to 110 GHz	300 nW to 100 mW (–35 dBm to +20 dBm) max. 300 mW (AVG) / 10 W (PK, 1 μs)	1.00 mm
Average power		T	
NRP-Z91	9 kHz to 6 GHz	200 pW to 200 mW (–67 dBm to +23 dBm) max. 400 mW (AVG) / 1 W (PK, 10 μs)	N
NRP-Z92	9 kHz to 6 GHz	2 nW to 2 W (–57 dBm to +33 dBm) max. 3 W (AVG) / 10 W (PK, 10 μs)	N
Level control s			
NRP-Z28	10 MHz to 18 GHz	200 pW to 100 mW (–67 dBm to +20 dBm) max. 700 mW (AVG) / 4 W (PK, 10 μs)	N
NRP-Z98	9 kHz to 6 GHz	200 pW to 100 mW (–67 dBm to +20 dBm) max. 700 mW (AVG) / 4 W (PK, 10 μs)	N
Power sensor			
NRP-Z27	DC to 18 GHz	4 μW to 400 mW (–24 dBm to +26 dBm) max. 500 mW (AVG) / 30 W (PK, 1 μs)	N
NRP-Z37	DC to 26.5 GHz	4 μW to 400 mW (–24 dBm to +26 dBm) max. 500 mW (AVG) / 30 W (PK, 1 μs)	3.5 mm

Specifications in brief of the R&S®NRP-Zxx power sensors

Sensor type	Impedance matching (SWR)	Rise time Video BW	Zero offset	Noise (typ.)	Uncertainty for power measurements	
Ras			(typ.)		at +20 °C to +25	relative
Universal pow	ver sensors				absolute	TOIGHTO
NRP-Z11	10 MHz to 2.4 GHz: < 1.13				0.047 dB to	0.022 dB to
	> 2.4 GHz to 8.0 GHz: < 1.20				0.083 dB	0.066 dB
NRP-Z21	10 MHz to 2.4 GHz: < 1.13				0.047 dB to	0.022 dB to
==:	> 2.4 GHz to 8.0 GHz: < 1.20				0.128 dB	0.110 dB
	> 8.0 GHz to 18.0 GHz: < 1.25				0.720 dB	0.770 dB
NRP-Z31	10 MHz to 2.4 GHz: < 1.13				0.051 dB to	0.022 dB to
201	> 2.4 GHz to 8.0 GHz: < 1.20				0.137 dB	0.118 dB
	> 8.0 GHz to 18.0 GHz: < 1.25				0.707 42	0.770 03
	> 18.0 GHz to 26.5 GHz:< 1.30					
	> 26.5 GHz to 33.0 GHz:< 1.35					
NRP-Z41	50 MHz to 2.4 GHz: < 1.13	< 8 µs	64 pW	40 pW	0.074 dB to	0.028 dB to
241	> 2.4 GHz to 8.0 GHz: < 1.20	> 50 kHz	0 · p · ·		0.150 dB	0.137 dB
	> 8.0 GHz to 18.0 GHz: < 1.25	00 111 12			0.700 dB	0.707 dB
	> 18.0 GHz to 26.5 GHz: < 1.30					
	> 26.5 GHz to 33.0 GHz: < 1.35					
	> 33.0 GHz to 40.0 GHz: < 1.37					
NRP-Z61	50 MHz to 2.4 GHz: < 1.13				0.074 dB to	0.028 dB to
MM 201	> 2.4 GHz to 8.0 GHz: < 1.20				0.191 dB	0.166 dB
	> 8.0 GHz to 18.0 GHz: < 1.25				0.131 dB	0.700 dD
	> 18.0 GHz to 26.5 GHz: < 1.30					
	> 26.5 GHz to 33.0 GHz: < 1.35					
	> 33.0 GHz to 40.0 GHz: < 1.37					
	> 40.0 GHz to 50.0 GHz: < 1.40					
NRP-Z211	10 MHz to 2.4 GHz: < 1.13				0.054 dB to	0.022 dB to
	> 2.4 GHz to 8.0 GHz: < 1.20	< 10 µs			0.110 dB	0.112 dB
NRP-Z221	10 MHz to 2.4 GHz: < 1.13	> 40 kHz	290 pW	180 pW	0.054 dB to	0.022 dB to
	> 2.4 GHz to 8.0 GHz: < 1.20	10 10 12			0.143 dB	0.142 dB
	> 8.0 GHz to 18.0 GHz: < 1.25					
NRP-Z22	10 MHz to 2.4 GHz: < 1.14		0.7 nW	0.4 nW	0.079 dB to	0.022 dB to
	> 2.4 GHz to 8.0 GHz: < 1.20				0.178 dB	0.112 dB
	> 8.0 GHz to 12.4 GHz: < 1.25					
	> 12.4 GHz to 18.0 GHz:< 1.30					
NRP-Z23	10 MHz to 2.4 GHz: < 1.14		7 nW	4 nW	0.078 dB to	0.022 dB to
	> 2.4 GHz to 8.0 GHz: < 1.25	< 8 µs			0.199 dB	0.110 dB
	> 8.0 GHz to 12.4 GHz: < 1.30	> 50 kHz				
	> 12.4 GHz to 18.0 GHz:< 1.41					
NRP-Z24	10 MHz to 2.4 GHz: < 1.14		20 nW	13 nW	0.078 dB to	0.022 dB to
	> 2.4 GHz to 8.0 GHz: < 1.25				0.222 dB	0.110 dB
	> 8.0 GHz to 12.4 GHz: < 1.30					
	> 12.4 GHz to 18.0 GHz:< 1.41					
Wideband pov		I			T	
NRP-Z81	50 MHz to 2.4 GHz: < 1.16				0.130 dB to	0.039 dB to
	> 2.4 GHz to 8.0 GHz: < 1.20				0.150 dB	0.148 dB
	> 8.0 GHz to 18.0 GHz: < 1.25					
NRP-Z85	50 MHz to 2.4 GHz: < 1.16				0.130 dB to	0.039 dB to
	> 2.4 GHz to 8.0 GHz: < 1.20				0.170 dB	0.165 dB
NRP-Z86	> 8.0 GHz to 18.0 GHz: < 1.25					
model .40	> 18.0 GHz to 26.5 GHz: < 1.30	< 13 ns	220 pW	110 pW		
	> 26.5 GHz to 40.0 GHz:< 1.35	> 30 MHz				
NRP-Z86	50 MHz to 2.4 GHz: < 1.16				0.130 dB to	0.039 dB to
model .44	> 2.4 GHz to 8.0 GHz: < 1.20				0.190 dB	0.165 dB
	> 8.0 GHz to 18.0 GHz: < 1.25					
	> 18.0 GHz to 26.5 GHz:< 1.30					
	> 26.5 GHz to 40.0 GHz:< 1.35					
	> 40.0 GHz to 44.0 GHz:< 1.40					

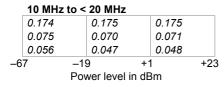
Specifications in brief of the R&S $^{\text{@}}$ NRP-Zxx power sensors (continued)

Sensor type	Impedance matching (SWR)	Rise time Video BW	Zero offset	Noise (typ.)	Uncertainty for power measurements at +20 °C to +25 °C		
R&S [®]			(typ.)		absolute	relative	
Thermal power	er sensors						
NRP-Z51	DC to 100 MHz: < 1.03				0.040 dB to	0.010 dB	
model .03	> 100 MHz to 2.4 GHz: < 1.06				0.082 dB		
	> 2.4 GHz to 12.4 GHz: < 1.13						
	> 12.4 GHz to 18.0 GHz:< 1.16						
NRP-Z52	DC to 100 MHz: < 1.03				0.040 dB to	0.010 dB	
	> 100 MHz to 2.4 GHz: < 1.06				0.101 dB		
	> 2.4 GHz to 12.4 GHz: < 1.13						
	> 12.4 GHz to 18.0 GHz:< 1.16						
	> 18.0 GHz to 26.5 GHz:< 1.22						
	> 26.5 GHz to 33.0 GHz:< 1.28						
NRP-Z55	DC to 100 MHz: < 1.03				0.040 dB to	0.010 dB	
model .03	> 100 MHz to 2.4 GHz: < 1.06				0.108 dB		
	> 2.4 GHz to 12.4 GHz: < 1.13						
	> 12.4 GHz to 18.0 GHz:< 1.16						
	> 18.0 GHz to 26.5 GHz:< 1.22						
	> 26.5 GHz to 40.0 GHz:< 1.28						
NRP-Z55	DC to 100 MHz: < 1.03				0.040 dB to	0.010 dB	
model .04	> 100 MHz to 2.4 GHz: < 1.06				0.138 dB		
	> 2.4 GHz to 12.4 GHz: < 1.13						
	> 12.4 GHz to 18.0 GHz:< 1.16						
	> 18.0 GHz to 26.5 GHz:< 1.22						
	> 26.5 GHz to 40.0 GHz:< 1.28						
	> 40.0 GHz to 44.0 GHz:< 1.30	_	15 nW	15 nW			
NRP-Z56	DC to 100 MHz: < 1.03				0.040 dB to	0.010 dB	
	> 100 MHz to 2.4 GHz: < 1.06				0.143 dB		
	> 2.4 GHz to 12.4 GHz: < 1.13						
	> 12.4 GHz to 18.0 GHz:< 1.16						
	> 18.0 GHz to 26.5 GHz:< 1.22						
	> 26.5 GHz to 40.0 GHz:< 1.28						
	> 40.0 GHz to 50.0 GHz:< 1.30						
NRP-Z57	DC to 100 MHz: < 1.03				0.040 dB to	0.010 dB	
	> 100 MHz to 2.4 GHz: < 1.06				0.248 dB		
	> 2.4 GHz to 12.4 GHz: < 1.13						
	> 12.4 GHz to 18.0 GHz:< 1.16						
	> 18.0 GHz to 26.5 GHz:< 1.22						
	> 26.5 GHz to 40.0 GHz:< 1.28						
	> 40.0 GHz to 50.0 GHz:< 1.30						
	> 50.0 GHz to 67.0 GHz:< 1.35						
NRP-Z58	DC to 100 MHz: < 1.05				0.040 dB to	0.014 dB	
	> 100 MHz to 2.4 GHz: < 1.08				0.318 dB		
	> 2.4 GHz to 12.4 GHz: < 1.18						
	> 12.4 GHz to 18.0 GHz:< 1.23						
	> 18.0 GHz to 26.5 GHz:< 1.28						
	> 26.5 GHz to 40.0 GHz:< 1.38						
	> 40.0 GHz to 50.0 GHz:< 1.46						
	> 50.0 GHz to 67.0 GHz:< 1.56						
	> 67.0 GHz to 80.0 GHz:< 1.60						
	> 80.0 GHz to 95.0 GHz:< 1.66						
	> 95.0 GHz to 110 GHz: < 1.70						

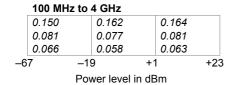
Specifications in brief of the R&S $^{\text{@}}$ NRP-Zxx power sensors (continued)

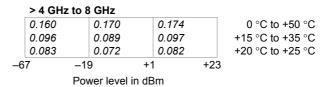
Sensor type	Impedance Rise time matching Video BV (SWR)			Zero offset (typ.)		Noise (typ.)		Uncertainty for power measurements at +20 °C to +25 °C	
								absolute	relative
Average power	r sensors								
NRP-Z91	10 MHz to 2.4 GHz:	< 1.13			64 pW	40 pW	0.047	dB to	0.022 dB to 0.066
	> 2.4 GHz to 6.0 GH	lz: < 1.20	_				0.083	dB	dB
NRP-Z92	10 MHz to 2.4 GHz:	< 1.14			0.7 nW	0.4 nW	0.079	dB to	0.022 dB to 0.087
	> 2.4 GHz to 6.0 GH	lz: < 1.20					0.151	dB	dB
Level control	sensors								
NRP-Z28	10 MHz to 2.4 GHz:	< 1.11	< 8 µs	3			0.047	dB to	0.022 dB to 0.110
	> 2.4 GHz to 4.0 GH	lz: < 1.15	> 50 k	kHz		0.130	dB	dB	
	> 4.0 GHz to 8.0 GH	lz: < 1.22			67 pW				
	> 8.0 GHz to 18 GHz	z: < 1.30				42 pW			
NRP-Z98	9 kHz to 2.4 GHz:	< 1.11	_				0.047	dB to	0.022 dB to 0.066
	> 2.4 GHz to 4.0 GH	lz: < 1.15					0.083	dB	dB
	> 4.0 GHz to 6.0 GH	lz: < 1.22							
Power sensor	modules								
NRP-Z27	DC to 2.0 GHz:	< 1.15	_				0.070	dB to	0.032 dB
	> 2.0 GHz to 4.2 GH	lz: < 1.18					0.112	'dB	
	> 4.2 GHz to 8.0 GH	lz: < 1.23							
	> 8.0 GHz to 12.4 G	Hz: < 1.25							
	> 12.4 GHz to 18.0 (GHz:< 1.35			200 nW	120 nW			
NRP-Z37	DC to 2.0 GHz:	< 1.15	_				0.070	dB to	0.032 dB
	> 2.0 GHz to 4.2 GH	lz: < 1.18					0.122	dB	
	> 4.2 GHz to 8.0 GH	lz: < 1.23							
	> 8.0 GHz to 12.4 G	Hz: < 1.25							
	> 12.4 GHz to 18.0 (GHz:< 1.30							
	> 18.0 GHz to 26.5 (GHz:< 1.45							

Universal power sensors in R&S®Smart Sensor Technology


R&S®NRP-Z11/-Z21 universal power sensors


Specifications from 8 GHz to 18 GHz apply only to the R&S®NRP-Z21.


Frequency range	R&S [®] NRP-Z11	10 MHz to 8 GHz					
	R&S [®] NRP-Z21	10 MHz to 18 GHz					
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.13 (1.11)					
	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)	(): +15 °C to +35 °C				
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23)					
Power measurement range	continuous average	200 pW to 200 mW (-67	dBm to +23 dBm)				
	burst average	200 nW to 200 mW (-37	dBm to +23 dBm)				
	timeslot/gate average	600 pW to 200 mW (-62	dBm to +23 dBm) 1				
	trace	10 nW to 200 mW (-50 d	dBm to +23 dBm) 2				
Max. power	average power	0.4 W (+26 dBm), contin	uous				
	peak envelope power	1.0 W (+30 dBm) for ma	x. 10 µs				
Measurement subranges	path 1	-67 dBm to -14 dBm					
	path 2	-47 dBm to +6 dBm					
	path 3	-27 dBm to +23 dBm					
Transition regions	with automatic path selection ³	(-19 ± 1) dBm to (-13 ±	1) dBm				
		(+1 ± 1) dBm to (+7 ± 1)	dBm				
Dynamic response	video bandwidth	> 50 kHz (100 kHz)					
	single-shot bandwidth	> 50 kHz (100 kHz)	(): +15 °C to +35 °C				
	rise time 10 %/90 %	< 8 µs (4 µs)					
Acquisition	sample rate (continuous)	119.467 kHz ⁴					
Triggering	internal						
	threshold level range	-40 dBm to +23 dBm					
	threshold level accuracy	identical to uncertainty for	or absolute power				
		measurements					
	threshold level hysteresis 0 dB to 10 dB						
	dropout ⁵	0 s to 10 s					
	external	external see R&S®NRP2 base unit, R&S®NRP-Z3 L					
		adapter cable or R&S®NRP-Z5 USB					
	slope (external, internal)	pos./neg.					
	delay	–5 ms to +100 s					
	hold-off	0 s to 10 s					
	resolution (delay, hold-off, dropout)	sample period (≈ 8 µs)					
	source	internal, external, immediate, bus, hold					
Zero offset	initial, without zeroing						
	path 1	< 470 [500] (100) pW					
	path 2	< 47 [50] (10) nW					
	path 3	< 4.7 [5] (1) µW					
	after external zeroing 6,7	[-](.) [(), to a last 4 Olla				
	path 1	< 104 [110] (64) pW	(): typical at 1 GHz +15 °C to +35 °C				
	path 2	< 10 [11] (6) nW	+15 °C to +35 °C				
	path 3	< 1.0 [1.1] (0.6) µW	[]: 0 CUz to 10 CUz				
Zero drift 8	path 1						
Loro dilit	path 2	< 35 [37] (0) pW < 3.0 [3.2] (0) nW					
	path 3	< 0.30 [0.32] (0) µW					
Measurement noise 9	path 1	< 65 [69] (40) pW					
mousurement noise	path 2	< 6.3 [6.6] (4.0) nW					
	path 3	< 6.3 [6.6] (4.0) nW < 0.63 [0.66] (0.4) μW					


R&S®NRP-Z11/-Z21 universal power sensors (continued)

Uncertainty for absolute power measurements ¹⁰ in dB

> 8 G	Hz to 12	.4 GHz	<u>.</u>					
0.168	3 (0.176		0.184				
0.106	6 (0.096		0.110				
0.094	1 (0.079		0.096				
– 67	-19		+1		+23			
	Power level in dBm							

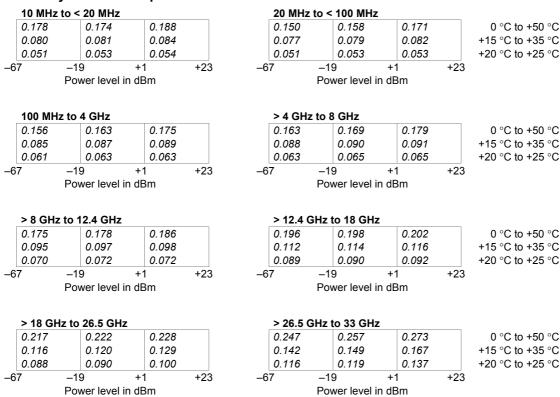
> 12.	4 GHz to	18 GHz							
0.188	3 (0.196	0.210		0 °C to +50 °C				
0.133	3 (0.120	0.142		+15 °C to +35 °C				
0.123	3 (0.103	0.128		+20 °C to +25 °C				
-67	-19		+1	+23					
	Power level in dBm								

R&S®NRP-Z11/-Z21 universal power sensors (continued)

Uncertainty for relative power measurements ¹¹ in dB

	10 MH=	to < 20 MHz			20 MHz to	o < 100 MHz		
+23		0.229	0.027	+23		0.215	0.027	0 °C to +50 °C
. 20	0.220	0.080	0.022	123	0.082	0.078	0.027	+15 °C to +35 °C
+7	0.046	0.044	0.022	+7	0.046	0.044	0.022	+20 °C to +25 °C
Τ/	0.040	0.044	0.022	+1	0.040	0.044	0.022	+20 C 10 +25 C
+1	0.226	0.027	0.229	+1	0.205	0.027	0.215	0 °C to +50 °C
	0.083	0.022	0.080		0.081	0.022	0.078	+15 °C to +35 °C
–13	0.045	0.022	0.044	-13	0.044	0.022	0.044	+20 °C to +25 °C
-19	0.023	0.226	0.226	–19	0.023	0.205	0.206	0 °C to +50 °C
-13	0.023	0.083	0.084	-13	0.023	0.203	0.200	+15 °C to +35 °C
-67		0.085	0.046	67	0.022	0.067	0.062	+20 °C to +25 °C
-6	1		1/+7 +23	3 –6				+23
		Power level in dB	m		PC	ower level in dE	sm	
	100 ME	Iz to 4 GHz			> 4 GHz t	o 8 GHz		
+23		0.218	0.038	+23	0.215	0.223	0.049	0 °C to +50 °C
	0.088	0.085	0.032		0.097	0.093	0.044	+15 °C to +35 °C
+7	0.055	0.047	0.031	+7	0.066	0.059	0.043	+20 °C to +25 °C
+1	0.206	0.028	0.248	+1	0.210	0.030	0.000	0 °C to +50 °C
+1			0.218	+1			0.223	
40	0.083	0.022	0.085	10	0.088	0.022	0.093	+15 °C to +35 °C
-13	0.048	0.022	0.047	–13	0.054	0.022	0.059	+20 °C to +25 °C
-19	0.023	0.206	0.209	-19	0.024	0.210	0.215	0 °C to +50 °C
	0.022	0.083	0.088		0.022	0.088	0.097	+15 °C to +35 °C
-67	0.022	0.048	0.055	–67	0.022	0.054	0.066	+20 °C to +25 °C
-6			1/+7 +23					+23
		Power level in dB	m		Po	ower level in dE	3m	
	> 8 GH	z to 12.4 GHz			> 12.4 GH	Iz to 18 GHz		
+23	0.224	0.231	0.064	+23	0.244	0.245	0.086	0 °C to +50 °C
	0.111	0.106	0.061		0.135	0.128	0.084	+15 °C to +35 °C
+7	0.084	0.077	0.060	+7	0.110	0.102	0.083	+20 °C to +25 °C
+1	0.216	0.034	0.231	+1	0.230	0.040	0.245	0 °C to +50 °C
	0.210	0.027	0.106		0.230	0.040	0.128	+15 °C to +35 °C
	0.090	0.027	0.700		0.112	0.034	0.120	F15 C10 +35 C

	> 8 GH	z to 12	2.4 GHz					
+23	0.224		0.231		0.064			
	0.111		0.106		0.061			
+7	0.084		0.077		0.060			
+1	0.216		0.034		0.231			
	0.096		0.027		0.106			
-13	0.063		0.025		0.077			
-19	0.024		0.216		0.224			
	0.022		0.096		0.111			
-67	0.022		0.063		0.084			
-6	7	-19/-	-13	+1/+	7	+23		
Power level in dBm								


	> 12.4	GHz to	18 GHz	Z				
+23	0.244		0.245		0.086		0 °C to +50 °C	
	0.135		0.128		0.084		+15 °C to +35 °C	
+7	0.110		0.102		0.083		+20 °C to +25 °C	
+1	0.230		0.040		0.245		0 °C to +50 °C	
	0.112		0.034		0.128		+15 °C to +35 °C	
-13	0.079		0.033		0.102		+20 °C to +25 °C	
– 19	0.024		0.230		0.244		0 °C to +50 °C	
	0.022		0.112		0.135		+15 °C to +35 °C	
-67	0.022		0.079		0.110		+20 °C to +25 °C	
-6	67	-19/-	-13	+1/+	7	+23		
Power level in dBm								

R&S®NRP-Z31 universal power sensor

Frequency range		10 MHz to 33 GHz		
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.13 (1.11)		
,	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)		
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23) (): +15 °C to +		
	> 18.0 GHz to 26.5 GHz	< 1.30 (1.28)		
	> 26.5 GHz to 33.0 GHz	< 1.35 (1.33)		
Power measurement range	continuous average	200 pW to 200 mW (-67	dBm to +23 dBm)	
_	burst average	200 nW to 200 mW (-37	dBm to +23 dBm)	
	timeslot/gate average	600 pW to 200 mW (-62	dBm to +23 dBm) 1	
	trace	10 nW to 200 mW (-50 d	,	
Max. power	average power	0.4 W (+26 dBm), contin	uous	
	peak envelope power	1.0 W (+30 dBm) for ma	x. 10 µs	
Measurement subranges	path 1	-67 dBm to -14 dBm		
	path 2	-47 dBm to +6 dBm		
	path 3	-27 dBm to +23 dBm		
Transition regions	with automatic path selection ³	(-19 ± 1) dBm to (-13 ±	,	
		(+1 ± 1) dBm to (+7 ± 1)	dBm	
Dynamic response	video bandwidth	> 50 kHz (100 kHz)		
	single-shot bandwidth	> 50 kHz (100 kHz)	(): +15 °C to +35 °C	
	rise time 10 %/90 %	< 8 µs (4 µs)		
Acquisition	sample rate (continuous)	133.358 kHz (default) or	119.467 kHz ⁴	
Triggering	internal			
	threshold level range			
	threshold level accuracy	identical to uncertainty for	or absolute power	
	measurements			
	threshold level hysteresis 0 dB to 10 dB			
	dropout ⁵	0 s to 10 s		
	external	see R&S®NRP2 base unit, R&S®NRP-Z3 USB		
		adapter cable or R&S®NRP-Z5 USB sensor hi		
	slope (external, internal)	pos./neg.		
	delay	–5 ms to +100 s		
	hold-off	0 s to 10 s		
	resolution (delay, hold-off, dropout)	sample period (≈ 8 µs)		
	source	internal, external, immed	liate, bus, hold	
Zero offset	initial, without zeroing			
	path 1	< 470 [500] (100) pW		
	path 2	< 47 [50] (10) nW		
	path 3	< 2.4 [2.5] (0.5) µW	(): typical at 1 GHz	
	after external zeroing 6,7		+15 °C to +35 °C	
	path 1	< 104 [113] (64) pW	110 0 10 100 0	
	path 2	< 10 [11] (6) nW	[]: 8 GHz to 33 GHz	
	path 3	< 0.5 [0.6] (0.3) µW		
Zero drift ⁸	path 1	< 35 [38] (0) pW		
	path 2	< 3.0 [3.3] (0) nW		
	path 3	< 0.15 [0.18] (0) µW		
Measurement noise 9	path 1	< 65 [71] (40) pW		
	path 2	< 6.3 [6.8] (4.0) nW		
	path 3	< 0.32 [0.37] (0.2) µW		

R&S®NRP-Z31 universal power sensor (continued)

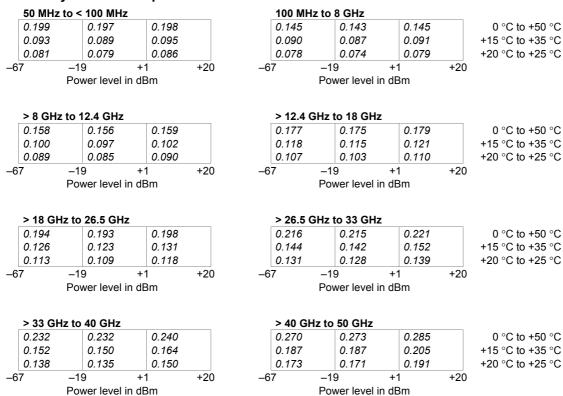
Uncertainty for absolute power measurements ¹⁰ in dB

R&S®NRP-Z31 universal power sensor (continued)

Unc	ertaint	ty for relative	power m	easuremen	ts ¹¹ in d	В		
	10 MHz	to < 20 MHz			20 MHz to	o < 100 MHz		
+23		0.221	0.040	+23	0.217	0.219	0.026	0 °C to +50 °C
723		-		723				
	0.099	0.095	0.022		0.093	0.094	0.022	+15 °C to +35 °C
+7	0.044	0.044	0.022	+7	0.044	0.044	0.022	+20 °C to +25 °C
+1	0.227	0.029	0.221	+1	0.204	0.024	0.219	0 °C to +50 °C
	0.093	0.022	0.095		0.090	0.022	0.094	+15 °C to +35 °C
12				12	0.044			+20 °C to +25 °C
–13	0.044	0.022	0.044		0.044	0.022	0.044	+20 °C 10 +25 °C
-19	0.030	0.227	0.245	-19	0.022	0.204	0.217	0 °C to +50 °C
	0.022	0.093	0.099		0.022	0.090	0.093	+15 °C to +35 °C
_67	0.022	0.044	0.044	-67		0.044	0.044	+20 °C to +25 °C
_0 <i>1</i>				+23 –6			/+7	+23
	•	Power level in dB		.20		ower level in dB		.20
		Iz to 4 GHz			> 4 GHz t	o 8 GHz		
+23	0.219	0.225	0.026	+23	0.226	0.232	0.029	0 °C to +50 °C
	0.096	0.098	0.022		0.100	0.102	0.023	+15 °C to +35 °C
+7	0.044	0.045	0.022	+7	0.046	0.048	0.022	+20 °C to +25 °C
•	0.077	0.0.0	0.022		0.070	0.070	0.022	120 0 10 120 0
+1	0.209	0.026	0.225	+1	0.217	0.028	0.232	0 °C to +50 °C
•	0.093	0.022	0.098		0.097	0.022	0.102	+15 °C to +35 °C
12				12				
–13	0.044	0.022	0.045		0.044	0.022	0.048	+20 °C to +25 °C
-19	0.022	0.209	0.219	-19	0.022	0.217	0.226	0 °C to +50 °C
-19				-19				
	0.022	0.093	0.096		0.022	0.097	0.100	+15 °C to +35 °C
-67	0.022	0.044	0.044	– 67	0.022	0.044	0.046	+20 °C to +25 °C
-6	7	-19/-13 +	1/+7	+23 –6	67 –	19/–13 +1	/+7	+23
		Power level in dB			> 12.4 GH	ower level in dB		
+23		0.240	0.032	+23		0.255	0.039	0 °C to +50 °C
	0.105	0.107	0.027		0.115	0.117	0.034	+15 °C to +35 °C
+7	0.051	0.053	0.026	+7	0.060	0.063	0.033	+20 °C to +25 °C
							·	
+1	0.232	0.031	0.240	+1	0.252	0.034	0.255	0 °C to +50 °C
•	0.102	0.025	0.107		0.109	0.029	0.117	+15 °C to +35 °C
-13	0.045	0.02	0.053	-13	0.049	0.028	0.063	+20 °C to +25 °C
-13	0.043	0.02	0.003	-13	0.049	0.026	0.003	+20 C 10 +25 C
-19	0.023	0.232	0.235	-19	0.024	0.252	0.249	0 °C to +50 °C
	0.022	0.102	0.105		0.022	0.109	0.115	+15 °C to +35 °C
67				67				
	0.022	0.045	0.051		0.022	0.049	0.060	+20 °C to +25 °C
– 6	1			+23 –6			/+7	+23
		Power level in dB	m		Pc	ower level in dB	m	
	> 18 GI	Hz to 26.5 GHz			> 26.5 GH	Iz to 33 GHz		
+23	0.287	0.289	0.057	+23	0.327	0.331	0.077	0 °C to +50 °C
	0.139	0.142	0.053		0.169	0.172	0.074	+15 °C to +35 °C
+7		0.088	0.052	+7	0.116	0.118	0.073	+20 °C to +25 °C
.,	0.000	0.000	0.002		0.110	0.770	0.070	120 0 10 120 0
+1	0.285	0.041	0.289	+1	0.312	0.047	0.331	0 °C to +50 °C
				''				
40	0.121	0.035	0.142		0.132	0.041	0.172	+15 °C to +35 °C
-13		0.034	0.088	-13	0.066	0.040	0.118	+20 °C to +25 °C
	0.057	0.004	0.000					
40				40	0.000	0.240	0.007	0.004-1.50.00
-19	0.026	0.285	0.287	-19	0.028	0.312	0.327	0 °C to +50 °C
	0.026 0.022	0.285 0.121	0.287 0.139		0.022	0.132	0.169	+15 °C to +35 °C
	0.026	0.285	0.287		0.022 0.022			

Power level in dBm

Power level in dBm


R&S®NRP-Z41/-Z61 universal power sensors

Specifications from 50 MHz to 40 GHz apply to the R&S®NRP-Z41. Specifications from 50 MHz to 50 GHz apply to the R&S®NRP-Z61.

Frequency range	R&S®NRP-Z41	50 MHz to 40 GHz			
- - -	R&S [®] NRP-Z61	50 MHz to 50 GHz			
Impedance matching (SWR)	50 MHz to 2.4 GHz	< 1.13 (1.11)			
	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)			
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23) (): +15 °C to +3			
	> 18.0 GHz to 26.5 GHz	< 1.30 (1.28)			
	> 26.5 GHz to 33.0 GHz	< 1.35 (1.33)			
	> 33.0 GHz to 40.0 GHz	< 1.37 (1.35)			
	> 40.0 GHz to 50.0 GHz	< 1.40 (1.38)			
Power measurement range	continuous average	200 pW to 100 mW (-67	dBm to +20 dBm)		
_	burst average	200 nW to 100 mW (-37	dBm to +20 dBm)		
	timeslot/gate average	600 pW to 100 mW (-62	dBm to +20 dBm) 1		
	trace	10 nW to 100 mW (-50 d			
Max. power	average power	0.4 W (+23 dBm), contin	uous		
	peak envelope power	1.0 W (+30 dBm) for ma	x. 10 µs		
Measurement subranges	path 1	-67 dBm to -14 dBm			
_	path 2	-47 dBm to +6 dBm			
	path 3	-27 dBm to +20 dBm			
Transition regions	with automatic path selection ³	(-19 ± 1) dBm to (-13 ±	1) dBm		
		$(+1 \pm 1)$ dBm to $(+7 \pm 1)$	dBm		
Dynamic response	video bandwidth	> 50 kHz (100 kHz)			
	single-shot bandwidth	> 50 kHz (100 kHz)	(): +15 °C to +35 °		
	rise time 10 %/90 %	< 8 µs (4 µs)			
Acquisition	sample rate (continuous)	133.358 kHz (default) or	119.467 kHz ⁴		
Triggering	internal				
	threshold level range —40 dBm to +20 dBm				
	threshold level accuracy	identical to uncertainty for absolute power			
		measurements			
	threshold level hysteresis	0 dB to 10 dB			
	dropout ⁵	0 s to 10 s			
	external	see R&S®NRP2 base un			
		adapter cable or R&S®NRP-Z5 USB sensor hub			
	slope (external, internal)	pos./neg.			
	delay	–5 ms to +100 s			
	hold-off	0 s to 10 s			
	resolution (delay, hold-off, dropout)	sample period (≈ 8 µs)			
	source	internal, external, immed	liate, bus, hold		
Zero offset	initial, without zeroing				
	path 1	< 470 [500] (100) pW			
	path 2	< 47 [50] (10) nW			
	path 3	< 2.4 [2.5] (0.5) μW			
	after external zeroing 6,7	Σ. τ [Σ.ο] (ο.ο) μττ	(): typical at 1 GHz		
	path 1	< 104 [127] (64) p\M	+15 °C to +35 °C		
	path 2	< 104 [127] (64) pW < 10 [13] (6) nW			
	path 3	< 10 [13] (6) nW []: 8 GHz to 50 < 0.5 [0.7] (0.3) μW			
Zero drift ⁸	•				
Zero uriit	path 1	< 35 [38] (0) pW < 3.0 [4.4] (0) nW			
	path 2				
Magaurament naise 9	path 3	< 0.15 [0.22] (0) µW			
Measurement noise ⁹	path 1	< 65 [80] (40) pW			
	path 2	< 6.3 [8.2] (4.0) nW			
	path 3	< 0.32 [0.45] (0.2) µW			

R&S®NRP-Z41/-Z61 universal power sensors (continued)

Uncertainty for absolute power measurements ¹⁰ in dB

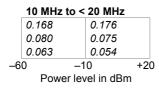
R&S®NRP-Z41/-Z61 universal power sensors (continued)

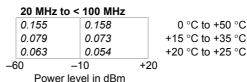
Uncertainty for relative power measurements ¹¹ in dB

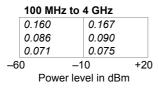
Power level in dBm

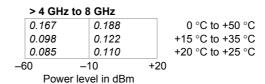
Olic	ertainty	y for relative	ponoi moa	Suicilieli		0		
	50 MHz	to < 100 MHz			100 MHz t	o < 8 GHz		
+20	0.305	0.281	0.065	+20	0.191	0.192	0.050	0 °C to +50 °C
	0.128	0.116	0.042		0.104	0.105	0.047	+15 °C to +35 °C
+7	0.083	0.077	0.036	+7	0.082	0.083	0.046	+20 °C to +25 °C
·	0.000		0.000	•		0.000	0.0.0	
+1	0.280	0.064	0.281	+1	0.189	0.042	0.192	0 °C to +50 °C
	0.114	0.038	0.116		0.099	0.039	0.105	+15 °C to +35 °C
-13		0.032	0.077	-13	0.076	0.038	0.083	+20 °C to +25 °C
	0.070	0.002	0.077	.0	0.070	0.000	0.000	- 120 0 10 120 0
-19	0.060	0.280	0.305	-19	0.032	0.189	0.191	0 °C to +50 °C
	0.035	0.114	0.128		0.029	0.099	0.104	+15 °C to +35 °C
-67	0.029	0.076	0.083	–67		0.076	0.082	+20 °C to +25 °C
– 6			1/+7 +2					+20
		Power level in di				wer level in dE	3m	
		to 12.4 GHz				z to 18 GHz		_
+20	0.204	0.205	0.056	+20	0.220	0.222	0.063	0 °C to +50 °C
	0.109	0.112	0.053		0.117	0.120	0.060	+15 °C to +35 °C
+7	0.087	0.089	0.052	+7	0.093	0.097	0.059	+20 °C to +25 °C
+1	0.201	0.046	0.205	+1	0.217	0.051	0.222	0 °C to +50 °C
	0.104	0.043	0.112		0.110	0.048	0.120	+15 °C to +35 °C
-13	0.080	0.042	0.089	-13	0.084	0.047	0.097	+20 °C to +25 °C
-19	0.033	0.201	0.204	-19	0.035	0.217	0.220	0 °C to +50 °C
	0.031	0.104	0.109		0.032	0.110	0.117	+15 °C to +35 °C
-67		0.080	0.087	–67	0.031	0.084	0.093	+20 °C to +25 °C
-6			1/+7 +2					+20
·		Power level in di				wer level in dE		- 20
					. •			
		z to 26.5 GHz				z to 33 GHz		
+20		0.249	0.073	+20	0.060			
	0.130	0.135			0.268	0.271	0.082	0 °C to +50 °C
+7	0.103		0.070		0.142	0.148	0.079	0 °C to +50 °C +15 °C to +35 °C
		0.109	0.070 0.069	+7				
+1		0.109		+7	0.142	0.148	0.079	+15 °C to +35 °C
	0.241	0.057		+7 +1	0.142	0.148	0.079	+15 °C to +35 °C
	0.241 0.119		0.069		0.142 0.114	0.148 0.121	0.079 0.078	+15 °C to +35 °C +20 °C to +25 °C
-13		0.057	0.069		0.142 0.114 0.260	0.148 0.121 0.062	0.079 0.078 0.271	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C
-13	0.119	0.057 0.054	0.069 0.249 0.135	+1	0.142 0.114 0.260 0.127	0.148 0.121 0.062 0.059	0.079 0.078 0.271 0.148	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C
-13 -19	0.119 0.090	0.057 0.054	0.069 0.249 0.135	+1	0.142 0.114 0.260 0.127	0.148 0.121 0.062 0.059	0.079 0.078 0.271 0.148	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C
	0.119 0.090	0.057 0.054 0.053	0.069 0.249 0.135 0.109	+1 -13	0.142 0.114 0.260 0.127 0.095	0.148 0.121 0.062 0.059 0.058	0.079 0.078 0.271 0.148 0.121	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C
-19	0.119 0.090 0.038 0.035	0.057 0.054 0.053 0.241 0.119	0.069 0.249 0.135 0.109	+1 -13 -19	0.142 0.114 0.260 0.127 0.095 0.040 0.036	0.148 0.121 0.062 0.059 0.058 0.260 0.127	0.079 0.078 0.271 0.148 0.121	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C
-19	0.119 0.090 0.038 0.035 0.034	0.057 0.054 0.053	0.069 0.249 0.135 0.109 0.247 0.130 0.103	+1 -13 -19 -67	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035	0.148 0.121 0.062 0.059 0.058	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C
-19 -67	0.119 0.090 0.038 0.035 0.034	0.057 0.054 0.053 0.241 0.119 0.090	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2	+1 -13 -19 -67	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C
-19 -67	0.119 0.090 0.038 0.035 0.034	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2	+1 -13 -19 -67	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C
-19 -67	0.119 0.090 0.038 0.035 0.034 7	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 +	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2	+1 -13 -19 -67	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +*	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C
-19 -67 -6	0.119 0.090 0.038 0.035 0.034 7	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 + Power level in di	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2	+1 -13 -19 -67 0 -6	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C
-19 -67 -6	0.119 0.090 0.038 0.035 0.034 7 > 33 GH	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 4 Power level in dispersion of the second	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2	+1 -13 -19 -67	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po > 40 GHz	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C
-19 -67 -6	0.119 0.090 0.038 0.035 0.034 7 > 33 GH 0.293 0.158	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 + Power level in dispersion of the control of the co	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2 3m 0.092 0.090	+1 -13 -19 -67 0 -6	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po > 40 GHz	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE to 50 GHz 0.339 0.195	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114 1/+7	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C +20 °C to +25 °C
-19 -67 -6	0.119 0.090 0.038 0.035 0.034 7 > 33 GH	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 4 Power level in dispersion of the second	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2	+1 -13 -19 -67 0 -6	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po > 40 GHz	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C
-19 -67 -6 +20 +7	0.119 0.090 0.038 0.035 0.034 7 > 33 GH 0.293 0.158 0.128	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 + Power level in dispersion of the control of the co	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2 3m 0.092 0.090 0.089	+1 -13 -19 -67 0 -6	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po > 40 GHz 0.333 0.187 0.157	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE to 50 GHz 0.339 0.195 0.166	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114 1/+7 3m	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C +20 °C to +25 °C
-19 -67 -6 +20	0.119 0.090 0.038 0.035 0.034 7 > 33 GH 0.293 0.158 0.128	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 + Power level in displayed in display	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2 3m 0.092 0.090 0.089 0.297	+1 -13 -19 -67 0 -6	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po > 40 GHz 0.333 0.187 0.157	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE to 50 GHz 0.339 0.195 0.166	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114 0.114 0.109 0.108	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C +20 °C to +25 °C
-19 -67 -6 +20 +7	0.119 0.090 0.038 0.035 0.034 7 > 33 GH 0.293 0.158 0.128	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 Here and the series of the	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2 3m 0.092 0.090 0.089	+1 -13 -19 -67 0 -6 +20 +7	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po > 40 GHz 0.333 0.187 0.157	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE to 50 GHz 0.339 0.195 0.166	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114 1/+7 3m	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C +20 °C to +25 °C
-19 -67 -6 +20 +7	0.119 0.090 0.038 0.035 0.034 7 > 33 GH 0.293 0.158 0.128 0.282 0.137	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 + Power level in displayed in display	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2 3m 0.092 0.090 0.089 0.297	+1 -13 -19 -67 0 -6 +20 +7	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po > 40 GHz 0.333 0.187 0.157	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE to 50 GHz 0.339 0.195 0.166	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114 0.114 0.109 0.108	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C
-19 -67 -6 +20 +7 +1	0.119 0.090 0.038 0.035 0.034 7 > 33 GH 0.293 0.158 0.128 0.282 0.137	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 Here and the series of the	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2 3m 0.092 0.090 0.089 0.297 0.165	+1 -13 -19 -67 0 -6 +20 +7 +1	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po > 40 GHz 0.333 0.187 0.157	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE to 50 GHz 0.339 0.195 0.166 0.076 0.073	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114 0.111 0.109 0.108	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +25 °C 0 °C to +50 °C +20 °C to +25 °C
-19 -67 -6 +20 +7 +1	0.119 0.090 0.038 0.035 0.034 7 > 33 GH 0.293 0.158 0.128 0.282 0.137	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 Here and the series of the	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2 3m 0.092 0.090 0.089 0.297 0.165	+1 -13 -19 -67 0 -6 +20 +7 +1	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po > 40 GHz 0.333 0.187 0.157	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE to 50 GHz 0.339 0.195 0.166 0.076 0.073	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114 0.111 0.109 0.108	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +25 °C 0 °C to +50 °C +20 °C to +25 °C
-19 -67 -6 +20 +7 +1	0.119 0.090 0.038 0.035 0.034 7 > 33 GH 0.293 0.158 0.128 0.282 0.137 0.102	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 4 Power level in displayed by the second of the second	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 3m 0.092 0.090 0.089 0.297 0.165 0.137	+1 -13 -19 -67 0 -6 +20 +7 +1 -13	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po > 40 GHz 0.333 0.187 0.157 0.314 0.152 0.114	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE to 50 GHz 0.339 0.195 0.166 0.076 0.073 0.072	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114 1/+7 3m 0.111 0.109 0.108 0.339 0.195 0.166	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +20 °C to +25 °C
-19 -67 -6 +20 +7 +1 -13	0.119 0.090 0.038 0.035 0.034 7 > 33 GH 0.293 0.158 0.128 0.282 0.137 0.102	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 4 Power level in displayed in display	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 +2 3m 0.092 0.090 0.089 0.297 0.165 0.137 0.293	+1 -13 -19 -67 0 -6 +20 +7 +1 -13 -19	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po > 40 GHz 0.333 0.187 0.157 0.314 0.152 0.114	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE to 50 GHz 0.339 0.195 0.166 0.076 0.073 0.072	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114 0.111 0.109 0.108 0.339 0.195 0.166	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C
-19 -67 -6 +20 +7 +1 -13	0.119 0.090 0.038 0.035 0.034 7 > 33 GH 0.293 0.158 0.128 0.282 0.137 0.102 0.042 0.038 0.037	0.057 0.054 0.053 0.241 0.119 0.090 -19/-13 4 Power level in di z to 40 GHz 0.297 0.165 0.137 0.067 0.064 0.063 0.282 0.137 0.102	0.069 0.249 0.135 0.109 0.247 0.130 0.103 1/+7 3m 0.092 0.090 0.089 0.297 0.165 0.137 0.293 0.158	+1 -13 -19 -67 0 +20 +7 +1 -13 -19 -67	0.142 0.114 0.260 0.127 0.095 0.040 0.036 0.035 7 Po > 40 GHz 0.333 0.187 0.157 0.314 0.152 0.114 0.045 0.041 0.040	0.148 0.121 0.062 0.059 0.058 0.260 0.127 0.095 19/–13 +* wer level in dE to 50 GHz 0.339 0.195 0.166 0.076 0.073 0.072 0.314 0.152 0.114	0.079 0.078 0.271 0.148 0.121 0.268 0.142 0.114 0.111 0.109 0.108 0.339 0.195 0.166 0.333 0.187 0.157	+15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C 0 °C to +50 °C +15 °C to +35 °C +20 °C to +25 °C

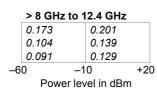
Power level in dBm

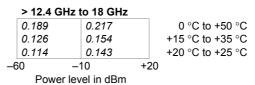

R&S®NRP-Z211/-Z221 universal power sensors

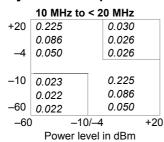

Specifications from 8 GHz to 18 GHz apply only to the R&S $^{\!0}NRP\text{-}Z221.$

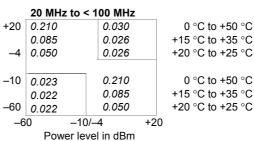

Frequency range	R&S®NRP-Z211 10 MHz to 8 GHz				
	R&S [®] NRP-Z221	10 MHz to 18 GHz			
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.13 (1.11)			
	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)	(): +15 °C to +35 °C		
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23)			
Power measurement range	continuous average	1.0 nW to 100 mW (-60 d	IBm to +20 dBm)		
	burst average	1.0 μW to 100 mW (–30 d	dBm to +20 dBm)		
	timeslot/gate average	3.0 nW to 100 mW (-55 d	IBm to +20 dBm) 1		
	trace	50 nW to 100 mW (-43 d	Bm to +20 dBm) 2		
Max. power	average power	0.4 W (+26 dBm), continu	ious		
	peak envelope power	2.0 W (+33 dBm) for max	. 10 μs		
Measurement subranges	path 1	-60 dBm to -5 dBm			
	path 2	-33 dBm to +20 dBm			
Transition regions	with automatic path selection ³	(-10 ± 1) dBm to (-4 ± 1)	dBm		
Dynamic response	video bandwidth	> 40 kHz (50 kHz)			
	single-shot bandwidth	> 40 kHz (50 kHz)	(): +15 °C to +35 °C		
	rise time 10 %/90 %	< 10 µs (8 µs)			
Acquisition	sample rate (continuous)	133.358 kHz (default) or	119.467 kHz ⁴		
Triggering	internal				
	threshold level range —33 dBm to +20 dBm				
	threshold level accuracy	identical to uncertainty fo	identical to uncertainty for absolute power		
		measurements			
	threshold level hysteresis 0 dB to 10 dB				
	dropout ⁵ 0 s to 10 s				
	external	see R&S®NRP2 base uni			
	adapter cable or R&S®NRP-Z5 USB s		RP-Z5 USB sensor hub		
	slope (external, internal)	pos./neg.			
	delay	–5 ms to +100 s			
	hold-off	0 s to 10 s			
	resolution (delay, hold-off, dropout)	sample period (≈ 8 µs)			
	source	internal, external, immedi	ate, bus, hold		
Zero offset	initial, without zeroing				
	path 1	< 1.88 [2.0] (0.6) nW			
	path 2	< 0.94 [1.0] (0.3) µW			
	after external zeroing 6,7	ν σ.σ. [1.σ] (σ.σ.) μττ	-		
	path 1	< 370 [390] (290) pW	(): typical at 1 GHz		
	path 2	2 2 7 7	+15 °C to +35 °C		
Zero drift ⁸		< 180 [190] (145) nW			
Zero uritt	path 1	< 140 [150] (0) pW	[]: 8 GHz to 18 GHz		
Management waits 9	path 2	< 60 [65] (0) nW			
Measurement noise 9	path 1	< 230 [240] (180) pW			
	path 2	< 110 [116] (90) nW			

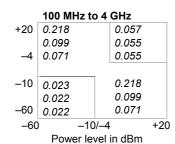

R&S®NRP-Z211/-Z221 universal power sensors (continued)

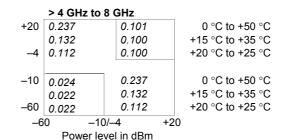

Uncertainty for absolute power measurements 10 in dB



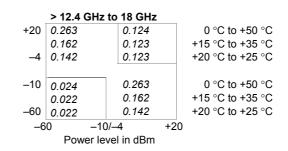




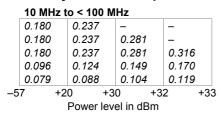


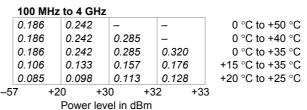


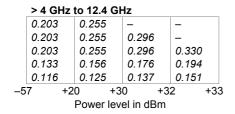
Uncertainty for relative power measurements ¹¹ in dB



	> 8 GHz to	12.4 GHz	
+20	0.253	0.124	
	0.155	0.123	
-4	0.136	0.123	
-10	0.024	0.253	
	0.022	0.155	
-60	0.022	0.136	
-60	-10	/–4	+20
	Power lev	vel in dBm	

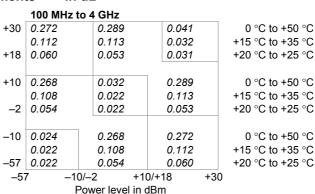

R&S®NRP-Z22 universal power sensor


Specifications apply when the power sensor is operated together with the RF power attenuator supplied. Please refer to the specifications of the R&S $^{\otimes}$ NRP-Z21 when operating the power sensor section alone.


Frequency range		10 MHz to 18 GHz	
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.14	
	> 2.4 GHz to 8.0 GHz	< 1.20	
	> 8.0 GHz to 12.4 GHz	< 1.25	
	> 12.4 GHz to 18.0 GHz	< 1.30	
Power measurement range	continuous average	2 nW to 2 W (–57 dBm	to +33 dBm)
	burst average	2 μW to 2 W (–27 dBm	
	timeslot/gate average	6 nW to 2 W (–52 dBm	
	trace	100 nW to 2 W (–40 dB)	
Max. power	average power	3 W (+35 dBm), continu	
maxi powoi	peak envelope power	10 W (+40 dBm) for ma	
Measurement subranges	path 1	-57 dBm to -4 dBm	λ. 10 μ3
measurement subtanges	path 2	-37 dBm to +16 dBm	
	path 3	-17 dBm to +33 dBm	
Transition regions	with automatic path selection ³	(-9 ± 1.5) dBm to (-3 ±	1 E) dD
Transition regions	with automatic path selection		
Dynamia rosporas	video bandwidth	(+11 ± 1.5) dBm to (+17	± 1.3) UDIII
Dynamic response		> 50 kHz (100 kHz)	(), 14E °C to 12E °C
	single-shot bandwidth	> 50 kHz (100 kHz)	(): +15 °C to +35 °C
	rise time 10 %/90 %	< 8 µs (4 µs)	440.407.111.4
Acquisition	sample rate (continuous)	133.358 kHz (default) or	r 119.467 kHz
Triggering	internal		
	threshold level range	-30 dBm to +33 dBm	
	threshold level accuracy	identical to uncertainty f	or absolute power
		measurements	
	threshold level hysteresis	0 dB to 10 dB	
	dropout ⁵	0 s to 10 s	
	external	see R&S®NRP2 base unit, R&S®NRP-Z3 USB	
		adapter cable or R&S®NRP-Z5 USB sensor hul	
	slope (external, internal)	pos./neg.	
	delay	–5 ms to +100 s	
	hold-off	0 s to 10 s	
	resolution (delay, hold-off, dropout)	sample period	
	source	internal, external, imme	diate, bus, hold
Zero offset	initial, without zeroing		
	path 1	< 5.9 (1.2) nW	
	path 2	< 590 (120) nW	
	path 3	< 59 (12) µW	
	after external zeroing 6,7	7 7	
	path 1	< 1.3 (0.7) nW	
	path 2	< 120 (60) nW	(): typical at 1 GHz
	path 3	< 12 (6) µW	+15 °C to +35 °C
Zero drift ⁸	path 1	< 0.4 (0) nW	
20.0 dilit	path 2	< 40 (0) nW	
	path 3	< 4 (0) μW	
Measurement noise 9	path 1	< 0.8 (0.4) nW	_
wicasurement noise	•		
	path 2	< 80 (40) nW	
	path 3	< 8 (4) µW	

R&S®NRP-Z22 universal power sensor (continued)

Uncertainty for absolute power measurements ¹⁰ in dB



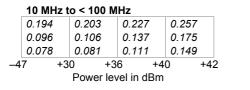
	> 12.4 (Hz to 18	GHz		
	0.223	0.271	_	_	0 °C to +50 °C
	0.223	0.271	0.310	_	0 °C to +40 °C
	0.223	0.271	0.310	0.343	0 °C to +35 °C
	0.163	0.182	0.199	0.215	+15 °C to +35 °C
	0.147	0.155	0.165	0.178	+20 °C to +25 °C
-5	7 +	20 +	30 +	32 +3	33
		Power le	vel in dBm	1	

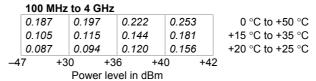
Uncertainty for relative power measurements ^{11 12} in dB

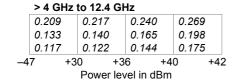
	10 MH	z to < '	100 MH	z			
+30	0.286		0.298		0.031		
	0.108		0.109		0.022		
+18	0.052		0.045		0.022		
+10	0.283		0.031		0.298		
	0.108		0.022		0.109		
-2	0.051		0.022		0.045		
-10	0.023		0.283		0.286		
	0.022		0.108		0.108		
– 57	0.022		0.051		0.052		
-5	7	-10/-2	2	+10	/+18	+30	
	Power level in dBm						

	> 4 GHz t	o 12.4 GHz					
+30	0.284	0.299	0.066	i			
	0.131	0.130	0.061				
+18	0.087	0.081	0.060)			
+10	0.277	0.037	0.299)			
	0.118	0.027	0.130)			
-2	0.068	0.025	0.081				
-10	0.024	0.277	0.284	1			
	0.022	0.118	0.131				
-57	0.022	0.068	0.087	•			
-5	7 –1	0/–2	+10/+18	+30			
	Power level in dBm						

	> 12.4 GH	z to 18 GHz		
+30	0.300	0.310	0.088	0 °C to +50 °C
	0.152	0.148	0.084	+15 °C to +35 °C
+18	0.112	0.106	0.083	+20 °C to +25 °C
+10	0.288	0.043	0.310	0 °C to +50 °C
	0.131	0.035	0.148	+15 °C to +35 °C
-2	0.082	0.033	0.106	+20 °C to +25 °C
-10	0.024	0.288	0.300	0 °C to +50 °C
	0.022	0.131	0.152	+15 °C to +35 °C
– 57	0.022	0.082	0.112	+20 °C to +25 °C
-5	7 –1	0/–2 +1	0/+18 +	30
	F	Power level in	dBm	


R&S®NRP-Z23 universal power sensor


Specifications apply when the power sensor is operated together with the RF power attenuator supplied. Please refer to the specifications of the R&S $^{\otimes}$ NRP-Z21 when operating the power sensor section alone.


Frequency range		10 MHz to 18 GHz	
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.14	
,	> 2.4 GHz to 8.0 GHz	< 1.25	
	> 8.0 GHz to 12.4 GHz	< 1.30	
	> 12.4 GHz to 18.0 GHz	< 1.41	
Power measurement range	continuous average	20 nW to 15 W (-47 dBr	n to +42 dBm)
•	burst average	20 μW to 15 W (–17 dBr	
	timeslot/gate average	60 nW to 15 W (-42 dBr	
	trace	1 μW to 15 W (–30 dBm	
Max. power	average power	18 W (+42.5 dBm), conti	
•	peak envelope power	100 W (+50 dBm) for ma	ax. 10 µs
Measurement subranges	path 1	-47 dBm to +6 dBm	'
U	path 2	-27 dBm to +26 dBm	
	path 3	-7 dBm to +42 dBm	
Transition regions	with automatic path selection ³	(+1 ± 1.75) dBm to (+7 ±	: 1.75) dBm
U	•	(+21 ± 1.75) dBm to (+2	
Dynamic response	video bandwidth	> 50 kHz (100 kHz)	,
	single-shot bandwidth	> 50 kHz (100 kHz)	(): +15 °C to +35 °C
	rise time 10 %/90 %	< 8 µs (4 µs)	
Acquisition	sample rate (continuous)	133.358 kHz (default) or	119.467 kHz ⁴
Triggering	internal		
33. 3	threshold level range –19 dBm to +42 dBm		
	threshold level accuracy	identical to uncertainty for absolute power	
	·	measurements	
	threshold level hysteresis	0 dB to 10 dB	
	dropout ⁵	0 s to 10 s	
	external	see R&S®NRP2 base unit, R&S®NRP-Z3 USB	
		adapter cable or R&S®NRP-Z5 USB sensor hub	
	slope (external, internal)	pos./neg.	
	delay	–5 ms to +100 s	
	hold-off	0 s to 10 s	
	resolution (delay, hold-off, dropout)	sample period	
	source	internal, external, immed	liate, bus, hold
Zero offset	initial, without zeroing		
	path 1	< 60 (12) nW	
	path 2	< 6 (1.2) µW	
	path 3	< 600 (120) µW	
	after external zeroing 6,7	(12) [11]	
	path 1	< 13 (7) nW	
	path 2	< 1.3 (0.6) µW	(): typical at 1 GHz
	path 3	< 130 (60) µW	+15 °C to +35 °C
Zero drift ⁸	path 1	< 5 (0) nW	
· · ·	path 2	< 0.4 (0) µW	
	path 3	< 40 (0) µW	
Measurement noise 9	path 1	< 8 (4) nW	
	path 2	< 0.8 (0.4) µW	
	P~	< 0.8 (0.4) µW < 80 (40) µW	

R&S®NRP-Z23 universal power sensor (continued)

Uncertainty for absolute power measurements ¹⁰ in dB

	> 12.4 @	SHz to 18	GHz		
	0.238	0.245	0.266	0.292	0 °C to +50 °C
	0.166	0.172	0.193	0.221	+15 °C to +35 °C
	0.151	0.155	0.172	0.199	+20 °C to +25 °C
-4	7 +:	30 +	36 +	40 +4	2
		Power le	evel in dBr	n	

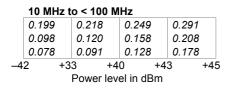
Uncertainty for relative power measurements ¹¹ in dB

	10 MHz 1	to < 100	MHz		
+42	0.226	0.2	229	0.027	
	0.084	0.0	080	0.022	
+28	0.046	0.0	044	0.022	
+20	0.226	0.0	027	0.229	
	0.083	0.0	022	0.080	
+8	0.045	0.0	022	0.044	
±0	0.023	0.2	226	0.226	
	0.022	0.0	283	0.084	
-47	0.022	0.0	045	0.046	
_4	17	±0/+8	+20	/+28	+42
		Power I	evel in d	Rm	

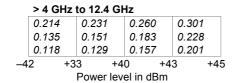
	100 MHz	to 4 GHz		
+42	0.209	0.218	0.038	0 °C to +50 °C
	0.088	0.085	0.032	+15 °C to +35 °C
+28	0.055	0.047	0.031	+20 °C to +25 °C
+20	0.206	0.028	0.218	0 °C to +50 °C
	0.083	0.022	0.085	+15 °C to +35 °C
+8	0.048	0.022	0.047	+20 °C to +25 °C
±0	0.023	0.206	0.209	0 °C to +50 °C
	0.022	0.083	0.088	+15 °C to +35 °C
-4 7	0.022	0.048	0.055	+20 °C to +25 °C
-4	7 ±	-0/+8 +20	/+28 +42	
		Power level in o	dBm	

	> 4 GHz to	12.4 GHz		
+42	0.224	0.231	0.064	
	0.111	0.106	0.061	
+28	0.084	0.077	0.060	
+20	0.216	0.034	0.231	
	0.096	0.027	0.106	
+8	0.063	0.025	0.077	
±0	0.024	0.216	0.224	
	0.022	0.096	0.111	
-47	0.022	0.063	0.084	
-4	7 ±0)/+8	+20/+28	+42
	P	ower level ir	n dBm	

	> 12 / GH	Iz to 18 GHz		
+42	1	0.245	0.086	0 °C to +50 °C
	0.135	0.128	0.084	+15 °C to +35 °C
+28	0.110	0.102	0.083	+20 °C to +25 °C
+20	0.230	0.040	0.245	0 °C to +50 °C
	0.112	0.034	0.128	+15 °C to +35 °C
+8	0.079	0.033	0.102	+20 °C to +25 °C
		_		
±0	0.024	0.230	0.244	0 °C to +50 °C
	0.022	0.112	0.135	+15 °C to +35 °C
-4 7	0.022	0.079	0.110	+20 °C to +25 °C
-4	.7 ±	0/+8 +2	0/+28	+42
	F	Power level in a	dRm	

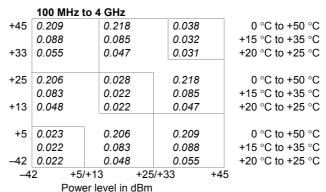

R&S®NRP-Z24 universal power sensor

Specifications apply when the power sensor is operated together with the RF power attenuator supplied. Please refer to the specifications of the R&S $^{\otimes}$ NRP-Z21 when operating the power sensor section alone.


Frequency range		10 MHz to 18 GHz		
Impedance matching (SWR)	10 MHz to 2.4 GHz	< 1.14		
	> 2.4 GHz to 8.0 GHz	< 1.25		
	> 8.0 GHz to 12.4 GHz	< 1.30		
	> 12.4 GHz to 18 GHz	< 1.41		
Power measurement range	continuous average	60 nW to 30 W (-42 dBm	n to +45 dBm)	
•	burst average	60 μW to 30 W (–12 dBm to +45 dBm)		
	timeslot/gate average	0.2 μW to 30 W (-37 dBm to +45 dBm) ¹		
	trace	3 μW to 30 W (–25 dBm		
Max. power	average power	36 W (+45.5 dBm), conti		
•	peak envelope power	300 W (+55 dBm) for ma	x. 10 µs	
Measurement subranges	path 1	-42 dBm to +11 dBm	•	
-	path 2	-22 dBm to +31 dBm		
	path 3	-2 dBm to +45 dBm		
Transition regions	with automatic path selection ³	(+6 ± 2) dBm to (+12 ± 2) dBm	
-	·	$(+26 \pm 2)$ dBm to $(+32 \pm 1)$	2) dBm	
Dynamic response	video bandwidth	> 50 kHz (100 kHz)		
	single-shot bandwidth	> 50 kHz (100 kHz)	(): +15 °C to +35 °C	
	rise time 10 %/90 %	< 8 µs (4 µs)		
Acquisition	sample rate (continuous)	133.358 kHz (default) or 119.467 kHz ⁴		
Triggering	internal			
	threshold level range	-14 dBm to +45 dBm		
	threshold level accuracy	identical to uncertainty for absolute power		
		measurements		
	threshold level hysteresis	0 dB to 10 dB		
	dropout ⁵	0 s to 10 s		
	external	see R&S®NRP2 base unit, R&S®NRP-Z3 USB		
		adapter cable or R&S®NRP-Z5 USB sensor hu		
	slope (external, internal)	pos./neg.		
	delay	–5 ms to +100 s		
	hold-off	0 s to 10 s		
	resolution (delay, hold-off, dropout)	sample period		
	source	internal, external, immediate, bus, hold		
Zero offset	initial, without zeroing			
	path 1	< 200 (40) nW		
	path 2	< 20 (4) µW		
	path 3	< 2 (0.4) mW		
	after external zeroing 6,7			
	path 1	< 44 (20) nW		
	path 2	< 4 2 (2) µW (): typical at 1 G		
	path 3	< 0.42 (0.2) mW	+15 °C to +35 °C	
Zero drift ⁸	path 1	< 15 (0) nW		
	path 2	< 1.3 (0) µW		
	path 3	< 130 (0) µW		
Measurement noise 9	path 1	< 27 (13) nW		
	path 2	< 2.6 (1.2) µW		
	path 3	< 0.26 (0.12) mW		

R&S®NRP-Z24 universal power sensor (continued)

Uncertainty for absolute power measurements ¹⁰ in dB



	> 12.4 (SHz to 18	GHz		
	0.242	0.258	0.284	0.322	0 °C to +50 °C
	0.167	0.181	0.208	0.248	+15 °C to +35 °C
	0.151	0.160	0.183	0.222	+20 °C to +25 °C
-4	2 +	33 +	40 +	43 +4	5
		Power le	vel in dBm	1	

Uncertainty for relative power measurements ¹¹ in dB

	10 MHz to	< 100 MHz	
+45	0.226	0.229	0.027
	0.084	0.080	0.022
+33	0.046	0.044	0.022
+25	0.226	0.027	0.229
	0.083	0.022	0.080
+13	0.045	0.022	0.044
+5	0.023	0.226	0.226
	0.022	0.083	0.084
-42	0.022	0.045	0.046
-4	2 +5	/+13 +2	5/+33 +45
	Powe	r level in dBm	

	> 4 GH	z to 1	2.4 GH	z		
+45	0.224		0.231		0.064	
	0.111		0.106		0.061	
+33	0.084		0.077		0.060	
+25	0.216		0.034		0.231	
	0.096		0.027		0.106	
+13	0.063		0.025		0.077	
+5	0.024		0.216		0.224	
	0.022		0.096		0.111	
-42	0.022		0.063		0.084	
-42	2	+5/+	13	+25/	/+33	+45

Power level in dBm

	> 12.4 GH	z to 18 GHz		
+45	0.244	0.245	0.086	0 °C to +50 °C
	0.135	0.128	0.084	+15 °C to +35 °C
+33	0.110	0.102	0.083	+20 °C to +25 °C
+25	0.230	0.040	0.245	0 °C to +50 °C
	0.112	0.034	0.128	+15 °C to +35 °C
+13	0.079	0.033	0.102	+20 °C to +25 °C
+5	0.024	0.230	0.244	0 °C to +50 °C
	0.022	0.112	0.135	+15 °C to +35 °C
-42	0.022	0.079	0.110	+20 °C to +25 °C
-4	2 +5	/+13 +2	5/+33 +4	5
	Powe	er level in dBm	า	

Additional characteristics of the R&S®NRP-Z11/-Z21/-Z31/-Z41/-Z61/-Z211/-Z221/-Z22/-Z23/-Z24 universal power sensors

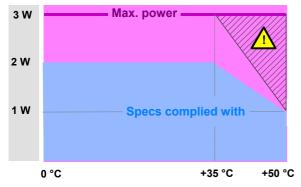
Sensor type	R&S [®] NRP-Z11/-Z21/-Z31/-Z41/-Z61	three-path diode power sensor
	R&S [®] NRP-Z211/-Z221	two-path diode power sensor
	R&S [®] NRP-Z22/-Z23/-Z24	three-path diode power sensor with preceding
		RF power attenuator
Measurand		power of incident wave
		power of source (DUT) into 50 Ω ¹³
RF connector	R&S®NRP-Z11/-Z21/-Z211/-Z221/	N (male)
	-Z22/-Z23/-Z24	TT (maio)
	R&S®NRP-Z31	3.50 mm (male)
	R&S®NRP-Z41	2.92 mm (male)
		,
14	R&S®NRP-Z61	2.40 mm (male)
RF attenuation ¹⁴	R&S®NRP-Z11/-Z21/-Z31/-Z41/-Z61/	not applicable
	-Z211/-Z221	
	R&S®NRP-Z22	10 dB
	R&S [®] NRP-Z23	20 dB
	R&S [®] NRP-Z24	25 dB
Measurement functions	stationary and recurring waveforms	continuous average
	, ,	burst average
		timeslot/gate average
		trace
	aingle avente	1.000
0	single events	trace
Continuous average function	measurand	mean power over recurring acquisition interval
	aperture	10 μs to 300 ms (20 ms default)
	window function	uniform or von Hann 15
	duty cycle correction ¹⁶	0.001 % to 99.999 %
	capacity of measurement buffer 17	1 to 1024 results
Burst average function	measurand	mean power over burst portion of recurring signal
•		(trigger settings required)
	detectable burst width	(93
	R&S®NRP-Z11/-Z21/-Z31/-Z41/	20 μs to 50 ms
	-Z61/-Z22/-Z23/-Z24	20 μο το σο πιο
	R&S [®] NRP-Z211/-Z221	25 va ta 50 ma
		25 μs to 50 ms
	minimum gap between bursts	10 μs
	dropout period ¹⁸ for burst end	0 to 3 ms
	detection	
	exclusion periods 19	
	start	0 to burst width
	end	0 s to 3 ms
	resolution (dropout and exclusion	sample period (≈ 8 µs)
	periods)	(o po)
Timeslot/gate average function	measurand	mean power over individual timeslots/gates of
Timeslougate average function	measuranu	recurring signal
	number of time calete/mates	1 to 100 (consequitive)
	number of timeslots/gates	1 to 128 (consecutive)
	nominal length	10 μs to 0.1 s
	start of first timeslot/gate	at delayed trigger event
	exclusion periods ¹⁹	
	start	0 to nominal length
	end	0 s to 3 ms
	resolution (nominal length and	sample period (≈ 8 µs)
	exclusion periods)	
Trace function	measurand	mean power over pixel length
Trace failedon	acquisition	mean power over pixer length
	•	100 us to 300 ms
	length (△)	100 µs to 300 ms
	start (referenced to delayed trigger)	–5 ms to +100 s
	result	
	pixels (M)	1 to 1024
	recelution (4/A4)	
	resolution (△/M)	
	,	≥ 10 µs
	non recurring or internally	≥ 10 µs
	,	≥ 10 µs ≥ 2.5 µs

Additional characteristics of the R&S®NRP-Z11/-Z21/-Z31/-Z41/-Z61/-Z211/-Z221/-Z22/-Z23/-Z24 universal power sensors (continued)

Averaging filter	modes	auto off (fixed averaging number)
		auto on (continuously auto-adapted)
		auto once (automatically fixed once)
	auto off	
	supported measurement functions	all
	averaging number	2^N ; $N = 0$ to 16 (13 for trace function)
	auto on/once	
	supported measurement functions	continuous average, burst average, timeslot/gate average
	normal operating mode	averaging number adapted to resolution setting and power to be measured
	fixed noise operating mode	averaging number adapted to specified noise content
	result output	
	moving mode	continuous, independent of averaging number
	rate	can be limited to 0.1 s ⁻¹
	repeat mode	only final result
Attenuation correction	function	corrects the measurement result by
		means of a fixed factor (dB offset)
	range	-200.000 dB to +200.000 dB
Embedding ²⁰	function	incorporates a two-port device at the
_		sensor input so that the measurement
		plane is shifted to the input of this device
	parameters	S_{11} , S_{21} , S_{12} and S_{22} of device
	frequencies	1 to 1000
Gamma correction	function	removes the influence of impedance
Gamma correction		mismatch from the measurement result so that the power of the source (DUT) into 50 Ω can be read
	parameters	magnitude and phase of reflection coefficient of source (DUT)
Frequency response correction	function	takes the frequency response of the sensor section and of the RF power attenuator into account (if applicable)
	parameter	center frequency of test signal
	residual uncertainty	see specification of calibration uncertainty and uncertainty for absolute and relative power measurements
Measurement times ²¹	continuous average	$2 \times (aperture + 145 \mu s) \times 2^N + t_z$
	buffered ¹⁷ , without averaging	$2 \times (aperture + 166 \mu s) \times buffer size + t_z$
2 ^N : averaging number	timeslot/gate average	· · · · · · · · · · · · · · · · · · ·
T: set number of timeslots	signal period – $T \times w > 100 \mu s$	$\leq 2 \times \text{signal period} \times (2^N + \frac{1}{2}) + t_z$
w: nominal length of timeslot	all other cases	\leq 4 × signal period × (2 ^N + 1/4) + t_z t_z : < 1.6 ms
Measurement speed	continuous average	
without averaging	single-triggered	550 s ⁻¹ (typ.)
aperture time = 10 µs	buffered 17	3000 s ⁻¹ (typ.)
Zeroing (duration)	depends on setting of averaging filter	
,	auto on	4 s
	auto off, integration time ²²	1
	< 4 s	4 s
	4 s to 16 s	integration time
	> 16 s	16 s

Additional characteristics of the R&S®NRP-Z11/-Z21/-Z31/-Z41/-Z61/-Z211/-Z221/-Z22/-Z23/-Z24 universal power sensors (continued)

	\	,	
	_		
			n: multiple
			of carrier
			frequency
	n = 2		
–40 dBc	< 0.001 dB	< 0.010 dB	
-30 dBc	< 0.004 dB	< 0.040 dB	
–20 dBc	< 0.040 dB	< 0.100 dB	
general	depends on CC	DF and RF band	dwidth of test
	signal		
WCDMA (3GPP test model 1-64)			
worst case	-0.02 dB to +0.	.07 dB	
typical	-0.01 dB to +0.	.03 dB	
R&S®NRP-Z11/-Z21/-Z31/-Z211/-Z221	/-Z22/-Z23/-Z24		
10 MHz to 2.4 GHz	< 0.02 (0.01)	(): +15 °C to	+35 °C
> 2.4 GHz	< 0.03 (0.02)	1 '	
R&S [®] NRP-Z41/-Z61	. , , , ,		
50 MHz to 8.0 GHz	< 0.04 (0.02)	(): levels ≤ 10) dBm
> 8.0 GHz to 18.0 GHz		1 '/	
> 18.0 GHz to 33.0 GHz	· , ,	1	
	· , ,		
		path 2	path 3
		1	0.048 dB
			0.057 dB
			0.072 dB
			0.076 dB
			0.099 dB
			path 3
			0.053 dB
			0.062 dB
			0.063 dB
			0.069 dB
			0.087 dB
			0.087 dB
			0.117 dB
			path 3
			0.055 dB
			0.055 dB
			0.005 dB
			0.073 dB
			0.093 dB 0.096 dB
			0.096 dB 0.115 dB
			0.115 dB 0.121 dB
	U. 134 UD		
	0 168 AP	0 156 AD	
> 40.0 GHz to 50.0 GHz	0.168 dB	0.156 dB	0.158 dB
> 40.0 GHz to 50.0 GHz R&S®NRP-Z211/-Z221	path 1	path 2	0.158 dB
> 40.0 GHz to 50.0 GHz R&S [®] NRP-Z211/-Z221 10 MHz to < 100 MHz	path 1 0.052 dB	path 2 0.053 dB	0.158 dB
> 40.0 GHz to 50.0 GHz R&S [®] NRP-Z211/-Z221 10 MHz to < 100 MHz 100 MHz to 4.0 GHz	path 1 0.052 dB 0.061 dB	path 2 0.053 dB 0.062 dB	0.158 dB
> 40.0 GHz to 50.0 GHz R&S®NRP-Z211/-Z221 10 MHz to < 100 MHz 100 MHz to 4.0 GHz > 4.0 GHz to 8.0 GHz	path 1 0.052 dB 0.061 dB 0.075 dB	path 2 0.053 dB 0.062 dB 0.076 dB	0.158 dB
> 40.0 GHz to 50.0 GHz R&S®NRP-Z211/-Z221 10 MHz to < 100 MHz 100 MHz to 4.0 GHz > 4.0 GHz to 8.0 GHz > 8.0 GHz to 12.4 GHz	path 1 0.052 dB 0.061 dB 0.075 dB 0.080 dB	path 2 0.053 dB 0.062 dB 0.076 dB 0.080 dB	0.158 dB
> 40.0 GHz to 50.0 GHz R&S®NRP-Z211/-Z221 10 MHz to < 100 MHz 100 MHz to 4.0 GHz > 4.0 GHz to 8.0 GHz > 8.0 GHz to 12.4 GHz > 12.4 GHz to 18.0 GHz	path 1 0.052 dB 0.061 dB 0.075 dB 0.080 dB 0.101 dB	path 2 0.053 dB 0.062 dB 0.076 dB 0.080 dB 0.102 dB	
> 40.0 GHz to 50.0 GHz R&S®NRP-Z211/-Z221 10 MHz to < 100 MHz 100 MHz to 4.0 GHz > 4.0 GHz to 8.0 GHz > 8.0 GHz to 12.4 GHz > 12.4 GHz to 18.0 GHz R&S®NRP-Z22/-Z23/-Z24	path 1 0.052 dB 0.061 dB 0.075 dB 0.080 dB 0.101 dB path 1	path 2 0.053 dB 0.062 dB 0.076 dB 0.080 dB 0.102 dB path 2	path 3
> 40.0 GHz to 50.0 GHz R&S®NRP-Z211/-Z221 10 MHz to < 100 MHz 100 MHz to 4.0 GHz > 4.0 GHz to 8.0 GHz > 8.0 GHz to 12.4 GHz > 12.4 GHz to 18.0 GHz R&S®NRP-Z22/-Z23/-Z24 10 MHz to < 100 MHz	path 1 0.052 dB 0.061 dB 0.075 dB 0.080 dB 0.101 dB path 1 0.078 dB	path 2 0.053 dB 0.062 dB 0.076 dB 0.080 dB 0.102 dB path 2 0.072 dB	path 3 0.073 dB
> 40.0 GHz to 50.0 GHz R&S®NRP-Z211/-Z221 10 MHz to < 100 MHz 100 MHz to 4.0 GHz > 4.0 GHz to 8.0 GHz > 8.0 GHz to 12.4 GHz > 12.4 GHz to 18.0 GHz R&S®NRP-Z22/-Z23/-Z24	path 1 0.052 dB 0.061 dB 0.075 dB 0.080 dB 0.101 dB path 1	path 2 0.053 dB 0.062 dB 0.076 dB 0.080 dB 0.102 dB path 2	path 3
	-20 dBc general WCDMA (3GPP test model 1-64) worst case typical R&S®NRP-Z11/-Z21/-Z31/-Z211/-Z221 10 MHz to 2.4 GHz > 2.4 GHz R&S®NRP-Z41/-Z61 50 MHz to 8.0 GHz > 8.0 GHz to 18.0 GHz	R&S®NRP-Z211/-Z221: all paths R&S®NRP-Z31: paths 1 and 2 R&S®NRP-Z41/-Z61: paths 1 and 2 -30 dBc -30 dBc -10 dBc -10 dBc -10 dBc -10 dBc -30 dBc -10 dBc -30 dBc -10 dBc -30 dBc -0.001 dB R&S®NRP-Z31/-Z41/-Z61: path 3 -2 -40 dBc -30 dBc -30 dBc -30 dBc -20 dBc -30 dBc -20 dB to +0 -20 d B to +0 -20 d B to +0 -20 d B to -0 -20 d	R&S®NRP-Z311/-Z221: all paths R&S®NRP-Z311-Z221: paths 1 and 2 R&S®NRP-Z311-Z61: paths 1 R&S®NRP-Z311-Z61: path 3 R&S®NRP-Z111-Z211-Z211-Z221-Z231-Z24 R&S®NRP-Z111-Z211-Z231-Z221-Z231-Z24 R&S®NRP-Z111-Z211-Z231-Z221-Z231-Z24 R&S®NRP-Z411-Z61 S0 MHz to 2.4 GHz S1 MHz to 2.4 GHz S1 MHz to 3.0 GHz S1 MHz to 3.0 GHz S1 MHz to 50.0 GHz R&S®NRP-Z111-Z21 R&SS®NRP-Z111-Z21 R&SS®NRP-Z111-Z21 R&SS®NRP-Z111-Z21 R&SS®NRP-Z111-Z21 R&SS®NRP-Z111-Z21 R&SS®NRP-Z31 R&SS®NRP-Z31 R&SS®NRP-Z31 R&SS®NRP-Z31 R&SS®NRP-Z31 R&SS®NRP-Z31 R&SSNRP-Z31 R&SSNRP-Z411-Z61 R&SSNRP-Z41


Additional characteristics of the R&S[®]NRP-Z11/-Z21/-Z31/-Z41/-Z61/-Z211/-Z221/-Z22/-Z23/-Z24 universal power sensors (continued)

Interface to host	power supply	+5 V/0.2 A (USB high-power device)					
	remote control	as a USB device (function) in full-speed mode,					
		compatible with USB 1.0/1.1/2.0 specifications					
	trigger input	differential (0 V/+3.3 V)					
	connector type	ODU Mini-Snap [®] L series,					
		six-pole cylindrical straight plug					
	permissible total cable length	≤ 10 m (see also tables on page 57)					
Dimensions (W × H × L)	R&S®NRP-Z11/-Z21/-Z31/-Z41/-Z61/	48 mm × 31 mm × 170 mm					
	-Z211/-Z221	(1.89 in × 1.22 in × 6.69 in)					
	R&S [®] NRP-Z22	48 mm × 31 mm × 214 mm					
		(1.89 in × 1.22 in × 8.42 in)					
	R&S [®] NRP-Z23	60 mm × 54 mm × 285 mm					
		(2.36 in × 2.13 in × 11.22 in)					
	R&S [®] NRP-Z24	60 mm × 54 mm × 344 mm					
		(2.36 in × 2.13 in × 13.54 in)					
	length including connecting cable						
	model .02	approx. 1.6 m (62.99 in)					
	model .04 (R&S®NRP-Z11 only)	approx. 0.6 m (23.62 in)					
Weight	R&S®NRP-Z11/-Z21/-Z31/-Z41/-Z61/	< 0.30 kg (0.66 lb)					
	-Z211/-Z221						
	R&S [®] NRP-Z22	< 0.37 kg (0.82 lb)					
	R&S [®] NRP-Z23	< 0.48 kg (1.06 lb)					
	R&S®NRP-Z24	< 0.63 kg (1.39 lb)					

Power rating of the R&S®NRP-Z22/-Z23/-Z24

Hatched area: The maximum surface temperatures permitted by IEC 1010-1 are exceeded. Provide protection against inadvertent contacting or apply only a short-term load to the power sensor.

Wideband power sensors in R&S®Smart Sensor Technology

R&S®NRP-Z81/-Z85/-Z86 wideband power sensors

Specifications from DC to 18 GHz apply to the R&S®NRP-Z81. Specifications from DC to 40 GHz apply to the R&S®NRP-Z85 and R&S®NRP-Z86 model .40. Specifications from DC to 44 GHz apply to the R&S®NRP-Z86 model .44.

Frequency range	R&S®NRP-Z81	50 MHz to 18 GHz			
request, range	R&S®NRP-Z85	50 MHz to 40 GHz			
	R&S®NRP-Z86 model .40	50 MHz to 40 GHz			
	R&S®NRP-Z86 model .44	50 MHz to 44 GHz			
Impedance matching (SWR)	50 MHz to 2.4 GHz	< 1.16 (1.11)			
impedance matering (OTTT)	> 2.4 GHz to 8.0 GHz	< 1.20 (1.18)			
	> 8.0 GHz to 18.0 GHz	< 1.25 (1.23)	(): +15 °C to +35 °C		
	> 18.0 GHz to 26.5 GHz	< 1.30 (1.28)	()		
	> 26.5 GHz to 40.0 GHz	< 1.30 (1.28) < 1.35 (1.33)			
	> 40.0 GHz to 44.0 GHz	< 1.40 (1.38)			
Power measurement range	continuous average	1 nW to 100 mW (–60 dB)	m to +20 dBm)		
1 ower measurement range	burst	1 1100 to 100 11100 (00 db)	iii to 120 dBiii)		
	full video bandwidth	20 μW to 100 mW (–17 di	8m to +20 dBm)		
	300 kHz	4 μW to 100 mW (–24 dB)			
	trace, timeslot/gate	20 nW to 100 mW (–47 dB			
	statistics	4 μW ²⁸ to 100 mW (–24 c			
Max. power	average power	0.2 W (+23 dBm), continu			
wax. power	peak envelope power	1.0 W (+30 dBm) for max.			
Dynamic response	video bandwidth	≥ 30 MHz ²⁹	. ι μδ		
Dynamic response	single-shot bandwidth	≥ 30 MHz ²⁹			
	video bandwidth setting		5 MU- 200 kU-		
	rise time 10 %/90 %	full (≥ 30 MHz), 5 MHz, 1.5 MHz, 300 kHz			
	full video bandwidth	≤ 13 ns ²⁹ (f ≥ 500 MHz)			
	iuii video baridwidiii	< 40 ns ²⁹ (f < 500 MHz)			
	5 MHz	< 75 ns			
	1.5 MHz	< 250 ns			
	300 kHz	< 1.2 µs			
	detectable burst width	\geq 50 ns ²⁹ (f \geq 500 MHz, full video bandwidth)			
	overshoot	≥ 50 fts (1 ≥ 500 MHz, full video baridwidth) ≤ 5 %			
Acquisition	sample rate [period]	≥ 3 /0			
Acquisition	full video bandwidth	$80 \times 10^6 \text{ s}^{-1} [12.5 \text{ ns}]$			
	5 MHz	$40 \times 10^6 \text{ s}^{-1} [25.0 \text{ ns}]$			
	1.5 MHz	$10 \times 10^6 \text{ s}^{-1} \text{ [100 ns]}$			
	300 kHz	$2.5 \times 10^6 \text{ s}^{-1} \text{ [400 ns]}$			
	capture length	50 ns to 1 s (depending o	n mose function)		
	time base accuracy	±50 ppm	ir meas. function)		
	time base decaracy	< 1 ns			
Triggering	internal	1110			
mggering	threshold level range	-30 dBm to +20 dBm (usa	able from		
	threshold level runge	–22 dBm with full video ba			
	threshold level accuracy	identical to uncertainty for	· · · · · · · · · · · · · · · · · · ·		
	tineshold level decardey	measurements	absolute power		
	threshold level hysteresis	0 dB to 10 dB			
	dropout ⁵	0 s to 10 s			
	external	see R&S [®] NRP2 base unit	D&Q®NDD.73 IQD		
	CALCITICI	adapter cable or R&S®NR			
	slope (external, internal)	pos./neg.	a -20 000 sensoi nub		
	delay	–51.2 µs to +10 s			
	hold-off	-51.2 μs to +10 s			
	resolution (delay, hold-off, dropout)	sample period			
	, , ,		ato hue hold		
	source	internal, external, immediate, bus, hold			

R&S®NRP-Z81/-Z85/-Z86 wideband power sensors (continued)

	-		•					
Zero offset		R&S®NRP-Z81	R&S®NRP-Z85/-Z86					
After external zeroing 30	continuous average							
_	10 μs aperture time	< 400 (220) pW	< 460 (235) pW					
	other durations	< 10.0 (2.0) nW	< 11.4 (2.2) nW					
	burst/timeslot/gate average, trace (pix	el mean)						
(): typical at 1 GHz	with averaging	< 10.0 (2.0) nW	< 11.4 (2.2) nW					
	without averaging	< 200 (100) nW	< 230 (110) nW					
	statistics	< 200 (100) nW	< 230 (110) nW					
Zero drift 8, 30		R&S®NRP-Z81	R&S [®] NRP-Z85/-Z86					
	continuous average							
	10 μs aperture time	< 200 pW	< 230 pW					
	other durations	< 500 pW	< 570 pW					
	burst/timeslot/gate average, trace (pix	<u> </u>						
	with averaging	< 2.0 nW	< 2.3 nW					
	without averaging	< 150 nW	< 170 nW					
	statistics	< 150 nW	< 170 nW					
Measurement noise ^{30, 31}		R&S [®] NRP-Z81	R&S®NRP-Z85/-Z86					
	continuous average 32							
	10 μs aperture time	< 200 (110) pW	< 230 (120) pW					
	other durations	< 5.0 (1.0) nW	< 5.7 (1.1) nW					
(): typical at 1 GHz	trace/statistics (noise per sample)							
	full video bandwidth	< 3.0 (2.0) µW	< 3.5 (2.2) µW					
	5 MHz	< 1.5 (1.0) µW	< 1.7 (1.1) µW					
	1.5 MHz	< 0.9 (0.6) µW	< 1.0 (0.7) µW					
	300 kHz	< 0.6 (0.4) µW	< 0.7 (0.5) µW					
	burst/timeslot/gate average	Multiply the noise-per-	sample specification for					
	trace (pixel mean)	full video bandwidth w	ith noise reduction factors					
	, ,	from tables B and C. F	or gate (pixel) lengths					
		≥ 2 µs, a noise value o	of 5 nW or better can be					
		achieved with adequat	e averaging.					
Uncertainty for absolute power		R&S®NRP-Z81	R&S [®] NRP-Z85/-Z86					
measurements 33	50 MHz to < 100 MHz	0.15 dB (3.5 %)	0.15 dB (3.5 %)					
0 °C to +50 °C	100 MHz to 8.0 GHz	0.13 dB (3.0 %)	0.13 dB (3.0 %)					
	> 8.0 GHz to 18.0 GHz	0.15 dB (3.5 %)	0.15 dB (3.5 %)					
	> 18.0 GHz to 26.5 GHz	_	0.15 dB (3.5 %)					
	7 10.0 Of 12 to 20.0 Of 12		0.10 02 (0.0 70)					
	> 26.5 GHz to 40.0 GHz	_	0.17 dB (4.0 %)					

Uncertainty for relative power measurements $^{\rm 34}$ in dB

	1 GHz t	o 18 GHz				to < 1GHz Hz to 44 GHz			
+20	0.179	0.116	0.064	+20	0.193	0.130	0.088		0 °C to +50 °C
	0.155	0.105	0.058		0.170	0.120	0.083		+15 °C to +35 °C
	0.148	0.102	0.056		0.165	0.117	0.083		+20 °C to +25 °C
+10	0.145	0.094	0.116	+10	0.162	0.110	0.130		0 °C to +50 °C
	0.114	0.079	0.105		0.134	0.098	0.120		+15 °C to +35 °C
-15	0.105	0.075	0.102		0.126	0.095	0.117		+20 °C to +25 °C
10	0.064	0.145	0.179	,	0.068	0.162	0.193		0 °C to +50 °C
	0.045	0.114	0.155		0.051	0.134	0.170		+15 °C to +35 °C
-60	0.039	0.105	0.148	-60	0.046	0.126	0.165		+20 °C to +25 °C
	-60	-15	+10	+20	-60	–15	+10	+20	
		Power level	in dBm			Power level	in dBm		

R&S®NRP-Z81/-Z85/-Z86 wideband power sensors (continued)

Table A Multipliers for zero offset, zero drift and noise specifications

Use these multipliers to calculate zero offset, zero drift and noise when operating the sensor at power levels above –20 dBm, at frequencies below 500 MHz, or at temperatures other than +23 °C.

Po	ower ≤ –20 dB	m –10 dBm	–5 dBm	0 dBm	5 dBm	10 dBm	15 dBm	20 dBm
Temperature								
0 °C	0.8 [0.9]	0.9 [1.0]	1.4 [1.5]	3.2 [3.5]	7.5 [8.5]	17 [18]	35 [37]	65 [70]
+15 °C	0.9 [1.0]	1.1 [1.2]	1.6 [1.8]	3.4 [3.6]	7.5 [8.5]			
+23 °C	1.0 [1.2]	1.3 [1.5]	1.8 [2.0]	3.5 [3.8]	7.6 [8.7]			
+35 °C	1.4 [1.7]	1.7 [2.1]	2.3 [2.6]	3.9 [4.3]	7.8 [9.0]			
+50 °C	2.5 [3.0]	2.7 [3.3]	3.3 [4.0]	5.2 [5.4]	8.7 [9.5]			

[] At frequencies < 500 MHz.

Table B Noise reduction factors for gating and smoothing

The noise reduction factors in this table describe how measurement noise is reduced if the mean value of adjacent samples is taken over a time interval. The time interval can be the length of a gate, timeslot, or pixel in trace mode. Without averaging or for single events, use the leftmost column. If averaging is activated, use the columns for the individual repetition rates and additionally apply multipliers from table C. The repetition rate is identical to the frequency of the measurement being carried out, i.e. the inverse of the trigger period.

Repetition rate	0	10 s ⁻¹	100 s ⁻¹	10 ³ s ⁻¹	10 ⁴ s ⁻¹	5×10 ⁴ s ⁻¹	10 ⁵ s ⁻¹	
Gate								
(pixel) length								
25 ns		•	().7				
50 ns			C).5				
100 ns		0.4						
200 ns			C).3				
500 ns			C).2				
1 µs	0.16		0.15		0.14	ļ		
2 µs	0.14	0.13	0.12	0.11		0.10		
10 µs	0.11	0.1	0.09	0.08	0.07	0.06		
100 µs	0.10	0.09	0.07	0.06	0.04			
1 ms	0.10	0.07	0.06	0.035				
10 ms	0.10	0.06	0.035					

Table C Noise reduction factors for averaging

Averaging number	2	4	8	16	32	64	128	256	512	1k	2k	4k	8k
Reduction factor	0.7	0.5	0.35	0.25	0.18	0.13	0.09	0.063	0.044	0.031	0.022	0.016	0.011

Example: A power measurement on a radar pulse is carried out by means of the timeslot/gate function. The gate length is set to 1 μ s, and the averaging number to 32. The pulse repetition rate is 100 Hz, and the measurement is performed at +15 °C ambient temperature. The pulse power is about –10 dBm.

From the specifications, a 2σ noise-per-sample value of 2 μ W (typ.) can be derived for reference conditions. Applying a multiplier of 1.1 from table A for +15 °C ambient temperature and –10 dBm pulse power results in 2.2 μ W sampling noise under measurement conditions. Gating reduces noise by a factor of 0.15 (table B), and averaging further reduces noise by a factor of 0.18 (table C). The residual 2σ noise of mean power within the gate can then be calculated as follows: 2.2 μ W × 0.15 × 0.18 = 59 nW (0.06 % of measured value).

Additional characteristics of the R&S®NRP-Z81/-Z85/-Z86 wideband power sensors

Sensor type		wideband diode power sensor		
Measurand Measurand		power of incident wave		
		power of source (DUT) into 50 Ω ¹³		
RF connector	R&S®NRP-Z81	N (male)		
	R&S [®] NRP-Z85	2.92 mm (male)		
	R&S®NRP-Z86	2.40 mm (male)		
Measurement functions	stationary and recurring waveforms	continuous average		
	otationary and roodining wavelenne	burst		
		timeslot/gate		
		trace, statistics		
	single events	trace. statistics		
Continuous average function	measurand	mean power over recurring acquisition interval		
oonanaoas average ranoasin	aperture	1 µs to 1 s (10 µs default)		
	window function	uniform or von Hann ¹⁵		
	duty cycle correction ¹⁶	0.001 % to 99.999 %		
	capacity of measurement buffer ¹⁷	1 to 8192 results		
Puret everege function	measurand	mean power over burst portion of recurring signal		
Burst average function	measuranu			
	detectable burst width	(trigger settings required) 50 ns to 0.1 s		
	minimum gap between bursts dropout period ¹⁸ for burst end	40 ns		
	detection	0 s to 0.1 s		
	exclusion periods 19	0.45		
	start	0 to burst width		
	end	0 s to 51.2 μs		
	resolution	sample period		
	(dropout and exclusion periods)			
Timeslot/gate function	measurand	mean, maximum and minimum power over individual timeslots/gates of recurring signal		
	number of timeslots/gates	1 to 16 (consecutive)		
	nominal length	50 ns to 0.1 s		
	start of first timeslot/gate	at delayed trigger event		
	exclusion periods 19			
	start	0 to nominal length		
	fence	0 s to 0.1 s (anywhere within timeslot)		
	end	0 s to 51.2 μs		
	resolution	12.5 ns		
	(nominal length and exclusion periods)			
Trace function	measurand	mean, random, maximum and minimum power		
		over pixel length		
	acquisition	, J.		
	length (△)	50 ns to 1 s		
	start (referenced to delayed trigger)	–4096 × Δ/M to +10 s		
	result	1000 X 2111 to + 10 0		
	pixels (M)	3 to 8192		
	resolution (Δ/M)	0.00.0102		
	normal	≥ sample period		
	equivalent time	≥ 100 ps		
	equivalent time			
	equivalent time automatic pulse measurements	pulse width, pulse period, pulse off time,		
		pulse width, pulse period, pulse off time, pulse duty cycle, pulse rise time, pulse fall time,		
		pulse width, pulse period, pulse off time, pulse duty cycle, pulse rise time, pulse fall time, pulse start time, pulse stop time,		
		pulse width, pulse period, pulse off time, pulse duty cycle, pulse rise time, pulse fall time,		

Additional characteristics of the R&S®NRP-Z81/-Z85/-Z86 wideband power sensors (continued)

· ,						
Statistics functions	measurand	CCDF or PDF over accumulated records				
	acquisition					
	mode	recurring or triggered				
	length (aperture)	10 μs to 0.3 s				
	start (referenced to delayed trigger)	0 s to +10 s				
	exclusion period (fence)	0 s to 0.3 s (anywhere within aperture)				
	number of accumulated records	2^{N} ; $N = 0$ to 16 (set by averaging number)				
	result					
	number of histogram classes (C)	3 to 8192				
	power span (S)	0.01 dB to 100 dB				
	minimum class width (S/C)	0.006 dB				
Averaging filter	modes	auto off (fixed averaging number)				
		auto on (continuously auto-adapted)				
		auto once (automatically fixed once)				
	auto off	auto once (automatically fixed once)				
		all				
	supported measurement functions	all 2^N ; $N = 0$ to 20 (16 for trace/statistics)				
	averaging number	2 ; N = 0 to 20 (16 for trace/statistics)				
	auto on/once	T				
	supported measurement functions	continuous average, burst average, timeslot/gate				
		average				
	normal operating mode	averaging number adapted to resolution setting				
		and power to be measured				
	fixed noise operating mode	averaging number adapted to specified noise				
		content				
	result output					
	moving mode	continuous, independent of averaging number				
	rate	can be limited to 0.1 s ⁻¹				
	repeat mode	only final result				
Attenuation correction	function	corrects the measurement result by means of a				
	Tariotion	fixed factor (dB offset)				
	range	-200.000 dB to +200.000 dB				
Embedding	function	incorporates a two-port device at the sensor input				
Linbedding	Turiction	so that the measurement plane is shifted to the				
		input of this device				
	naramatara	•				
	parameters	S_{11} , S_{21} , S_{12} and S_{22} of device				
	number of devices	user-definable				
	frequencies (sum of all devices)	≤ 32000				
Gamma correction	function	removes the influence of impedance mismatch				
		from the measurement result so that the power of				
		the source (DUT) into 50 Ω can be read				
	parameters	magnitude and phase of reflection coefficient of				
		source (DUT)				
Frequency response correction	function	takes the frequency response of the power				
		sensor into account				
	parameter	center frequency of test signal				
	residual uncertainty	see specification of calibration uncertainty and				
	,	uncertainty for absolute power measurements				
Measurement time ²¹	continuous average	, , , , , , , , , , , , , , , , , , , ,				
	single-triggered	$2 \times (aperture + 6.5 \mu s) \times 2^{N} + t_{z}$				
2 ^N : averaging number	buffered ¹⁷ , without averaging	$2 \times (aperture + 50 \mu s) \times buffer size + t_z$				
T: number of timeslots	bulleted , without averaging	t_z : < 1.6 ms				
w: nominal length of timeslot	timoslot/gato avorago	€2. ¬ 1.0 III3				
w. Hollina length of timesiot	timeslot/gate average	< cignal period v (2 ^N + 1) + 4				
	signal period – $T \times w > 6 \mu s$	\leq signal period \times (2 ^N + 1) + t_t				
	all other cases	$\leq 2 \times \text{ signal period} \times (2^N + \frac{1}{2}) + t_1$				
		$t_{\rm t}$: 3 ms (typ.)				
Measurement speed	continuous average	4				
Measurement speed without averaging aperture time = 1 µs	continuous average single-triggered buffered ¹⁷	960 s ⁻¹ (typ.) 9800 s ⁻¹ (typ.)				

Additional characteristics of the R&S $^{\otimes}$ NRP-Z81/-Z85/-Z86 wideband power sensors (continued)

Zeroing (duration)	including all functions, entire	8 s			
	frequency range				
	restricted to < 500 MHz, all functions	4 s			
	restricted to ≥ 500 MHz, all functions	4 s			
	restricted to trace and statistics	20 ms			
	function, entire frequency range				
Measurement error due to	n = 3	≤ 4 GHz 4 GHz to 12.4 GHz > 12	.4 GHz		
harmonics 35	-60 dBc	< 0.004 dB < 0.003 dB < 0.003	3 dB		
	-40 dBc	< 0.035 dB < 0.030 dB < 0.02	5 dB		
n: multiple of carrier frequency	-20 dBc	< 0.350 dB < 0.300 dB < 0.25	0 dB		
	n = 2	≤ 4 GHz 4 GHz to 8 GHz > 8	GHz		
	-60 dBc	< 0.001 dB < 0.002 dB < 0.002	3 dB		
	-40 dBc	< 0.010 dB < 0.017 dB < 0.02	5 dB		
	-20 dBc	< 0.100 dB < 0.170 dB < 0.25	0 dB		
Change of input reflection	-10 dBm to -60 dBm	< 0.035 (0.010)			
coefficient with respect to	-10 dBm to 0 dBm	< 0.035 (0.025) (): f ≤ 4 GHz			
power ³⁶	-10 dBm to +10 dBm	< 0.075 (0.055) +15 °C to +	10 +15 °C to +35 °C		
	-10 dBm to +20 dBm	< 0.090 (0.080)			
Calibration uncertainty 37		R&S [®] NRP-Z81 R&S [®] NRP-Z8	5/-Z86		
,	50 MHz to < 100 MHz	0.065 dB (1.5 %) 0.069 dB (1.6	%)		
	≥ 100 MHz to 2.4 GHz		0.052 dB (1.2 %)		
	> 2.4 GHz to 4.0 GHz	0.052 dB (1.2 %) 0.056 dB (1.3	0.056 dB (1.3 %)		
	> 4.0 GHz to 8.0 GHz	0.056 dB (1.3 %) 0.060 dB (1.4	0.060 dB (1.4 %)		
	> 8.0 GHz to 12.5 GHz	, , ,	0.073 dB (1.7 %)		
	> 12.5 GHz to 18.0 GHz		0.090 dB (2.1 %)		
	> 18.0 GHz to 26.5 GHz		0.086 dB (2.0 %)		
	> 26.5 GHz to 40.0 GHz	- 0.116 dB (2.7			
	> 40.0 GHz to 44.0 GHz	- 0.149 dB (3.5	%)		
Interface to host	power supply	+5 V/0.5 A (USB high-power device)			
	remote control	as a USB device (function) in full-speed	node,		
		compatible with USB 1.0/1.1/2.0 specific			
	trigger input	differential (0 V/+3.3 V)			
	connector type	ODU Mini-Snap® L series,			
	,	six-pole cylindrical straight plug			
	permissible total cable length	≤ 5 m (see also tables on page 57)			
Dimensions	W×H×L	48 mm × 31 mm × 170 mm			
		(1.89 in × 1.22 in × 6.69 in)			
	length including connecting cable	approx. 1.6 m (62.99 in)			
Weight		< 0.30 kg (0.66 lb)			

Thermal power sensors in R&S®Smart Sensor Technology

R&S®NRP-Z51/-Z52/-Z55/-Z56/-Z57 thermal power sensors

Specifications from DC to 18 GHz apply to the R&S®NRP-Z51 model .03.

Specifications from DC to 33 GHz apply to the R&S®NRP-Z52.

Specifications from DC to 40 GHz apply to the R&S®NRP-Z55 model .03.

Specifications from DC to 44 GHz apply to the R&S®NRP-Z55 model .04.

Specifications from DC to 50 GHz apply to the R&S®NRP-Z56.

Specifications from DC to 67 GHz apply to the R&S®NRP-Z57.

Frequency range	R&S®NRP-Z51 model .03	DC to 18 GH:	Z				
3	R&S®NRP-Z52	DC to 33 GH					
	R&S®NRP-Z55 model .03	DC to 40 GH	Z				
	R&S®NRP-Z55 model .04	DC to 44 GH	DC to 44 GHz				
	R&S®NRP-Z56	DC to 50 GH	Z				
	R&S®NRP-Z57	DC to 67 GH:	Z				
Impedance matching (SWR)	DC to 100 MHz	< 1.03					
	> 100 MHz to 2.4 GHz	< 1.06					
	> 2.4 GHz to 12.4 GHz	< 1.13					
	> 12.4 GHz to 18.0 GHz	< 1.16					
	> 18.0 GHz to 26.5 GHz	< 1.22					
	> 26.5 GHz to 33.0 GHz	< 1.28					
	> 33.0 GHz to 40.0 GHz	< 1.28					
	> 40.0 GHz to 44.0 GHz	< 1.30					
	> 44.0 GHz to 50.0 GHz	< 1.30					
	> 50.0 GHz to 67.0 GHz	< 1.35					
Power measurement range		300 nW to 10	0 mW (-35 dBm t	o +20 dBm),			
•			continuous, in a single range				
Max. power	average power	0.3 W (+25 d	0.3 W (+25 dBm), continuous				
	peak envelope power		,				
	R&S®NRP-Z51	20 W (43 dBr	20 W (43 dBm) for max. 1 μs				
	R&S [®] NRP-Z52/-Z55/-Z56/-Z57	10 W (40 dBr	n) for max. 1 µs				
Acquisition	sample rate	20.833 kHz (sigma-delta)				
Zero offset	after external zeroing ⁶	< 25 nW (typ	< 25 nW (typically 15 nW at 1 GHz)				
Zero drift ⁸		< 8 nW					
Measurement noise 9		< 25 nW (typ	ically 15 nW at 1	GHz)			
Uncertainty for absolute power		+20 °C to	+15 °C to	0 °C to			
measurements 38		+25 °C	+35 °C	+50 °C			
	DC to 100 MHz	0.040 dB	0.046 dB	0.067 dB			
	> 100 MHz to 2.4 GHz	0.048 dB	0.053 dB	0.072 dB			
	> 2.4 GHz to 8.0 GHz	0.054 dB	0.059 dB	0.079 dB			
	> 8.0 GHz to 12.4 GHz	0.063 dB	0.068 dB	0.085 dB			
	> 12.4 GHz to 18.0 GHz	0.082 dB	0.086 dB	0.100 dB			
	> 18.0 GHz to 26.5 GHz	0.086 dB	0.086 dB	0.102 dB			
	> 26.5 GHz to 33.0 GHz	0.101 dB	0.105 dB	0.121 dB			
	> 33.0 GHz to 40.0 GHz	0.108 dB	0.112 dB	0.127 dB			
	> 40.0 GHz to 44.0 GHz	0.138 dB	0.141 dB	0.155 dB			
	> 44.0 GHz to 50.0 GHz	0.143 dB	0.146 dB	0.159 dB			
	> 50.0 GHz to 59.0 GHz	0.206 dB	0.208 dB	0.220 dB			
		0.040.40	0.250 dB	0.260 dB			
	> 59.0 GHz to 67.0 GHz	0.248 dB					
Uncertainty for relative power measurements 39	> 59.0 GHz to 67.0 GHz	0.248 dB 0.010 dB	0.230 dB	0.200 dB			

R&S®NRP-Z58 thermal power sensor

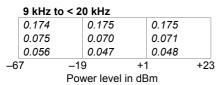
Frequency range		DC to 110 GH	lz			
Impedance matching (SWR)	DC to 100 MHz	< 1.05	< 1.05			
	> 100 MHz to 2.4 GHz	< 1.08	< 1.08			
	> 2.4 GHz to 12.4 GHz	< 1.18	< 1.18			
	> 12.4 GHz to 18.0 GHz	< 1.23	< 1.23			
	> 18.0 GHz to 26.5 GHz	< 1.28	< 1.28			
	> 26.5 GHz to 40.0 GHz	< 1.38	< 1.38			
	> 40.0 GHz to 50.0 GHz	< 1.46				
	> 50.0 GHz to 67.0 GHz	< 1.56				
	> 67.0 GHz to 80.0 GHz	< 1.60				
	> 80.0 GHz to 95.0 GHz	< 1.66				
	> 95.0 GHz to 110.0 GHz	< 1.70				
Power measurement range		300 nW to 10	0 mW (-35 dBm	to +20 dBm),		
3.			continuous, in a single range			
Max. power	average power		0.3 W (+25 dBm), continuous			
•	peak envelope power	10 W (40 dBn	10 W (40 dBm) for max. 1 μs			
Acquisition	sample rate		20.833 kHz (sigma-delta)			
Zero offset	after external zeroing ⁶		< 34 nW (typically 15 nW at 1 GHz)			
Zero drift ⁸		< 11 nW				
Measurement noise ⁹		< 34 nW (typi	< 34 nW (typically 15 nW at 1 GHz)			
Incertainty for absolute power		+20 °C to	+15 °C to	0 °C to		
neasurements 38		+25 °C	+35 °C	+50 °C		
	DC to 100 MHz	0.041 dB	0.047 dB	0.068 dB		
	> 100 MHz to 2.4 GHz	0.051 dB	0.057 dB	0.074 dB		
	> 2.4 GHz to 12.4 GHz	0.074 dB	0.078 dB	0.093 dB		
	> 12.4 GHz to 18.0 GHz	0.098 dB	0.101 dB	0.113 dB		
	> 18.0 GHz to 26.5 GHz	0.099 dB	0.103 dB	0.115 dB		
	> 26.5 GHz to 40.0 GHz	0.118 dB	0.122 dB	0.135 dB		
	> 40.0 GHz to 50.0 GHz	0.166 dB	0.169 dB	0.182 dB		
	> 50.0 GHz to 59.0 GHz	0.226 dB	0.229 dB	0.244 dB		
	> 59.0 GHz to 67.0 GHz	0.265 dB	0.268 dB	0.280 dB		
	> 67.0 GHz to 80.0 GHz	0.283 dB	0.286 dB	0.299 dB		
	> 80.0 GHz to 95.0 GHz	0.298 dB	0.302 dB	0.317 dB		
	> 95.0 GHz to 110.0 GHz	0.318 dB	0.321 dB	0.337 dB		
Incertainty for relative power	DC to 67.0 GHz	0.010 dB	1	1		
measurements ³⁹	> 67.0 GHz to 110.0 GHz	0.014 dB				

Additional characteristics of the R&S®NRP-Z51/-Z52/-Z55/-Z56/-Z57/-Z58 thermal power sensors

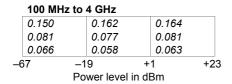
Sensor type		thermoelectric power sensor
Measurand		power of incident wave
		power of source (DUT) into 50 Ω ¹³
RF connector	R&S®NRP-Z51 model .03	N (male)
	R&S®NRP-Z52	3.50 mm (male)
	R&S®NRP-Z55 model .03	2.92 mm (male)
	R&S®NRP-Z55 model .04	2.92 mm (male)
	R&S®NRP-Z56	2.40 mm (male)
	R&S®NRP-Z57	1.85 mm (male)
	R&S [®] NRP-Z58	1.00 mm (male)
Measurement function	stationary and recurring waveforms	continuous average
Continuous average function	measurand	mean power over recurring acquisition interval
	aperture	0.5 ms to 300 ms (5 ms default)
	window function	uniform or von Hann 15
	duty cycle correction 16	0.001 % to 99.999 %
	capacity of measurement buffer 17	1 to 1024 results
Averaging filter	modes	auto off (fixed averaging number)
		auto on (continuously auto-adapted)
		auto once (automatically fixed once)
	auto off	
	averaging number	2^N ; $N = 0$ to 16
	auto on/once	
	normal operating mode	averaging number adapted to resolution setting
		and power to be measured
	fixed noise operating mode	averaging number adapted to specified noise
		content
	result output	
	moving mode	continuous, independent of averaging number
	rate	can be limited to 0.1 s ⁻¹
	repeat mode	only final result
Attenuation correction	function	corrects the measurement result by means of a
		fixed factor (dB offset)
	range	-200.000 dB to +200.000 dB
Embedding	function	incorporates a two-port device at the sensor input
		so that the measurement plane is shifted to the
		input of this device
	parameters	S_{11} , S_{21} , S_{12} and S_{22} of device
	frequencies	1 to 1000
Gamma correction	function	removes the influence of impedance mismatch
		from the measurement result so that the power of
		the source (DUT) into 50 Ω can be read
	parameters	magnitude and phase of reflection coefficient of
		source (DUT)
Frequency response correction	function	takes the frequency response of the power senso
		into account
	parameter	center frequency of test signal
	residual uncertainty	see specification of calibration uncertainty and
		uncertainty for absolute and relative power
		measurements
Measurement time ²¹		$2 \times (aperture + 450 \ \mu s) \times 2^{N} + t_{z} + t_{d}$
2 ^N : averaging number		t_z : < 4 ms
		$t_{ m d}$ must be taken into account when auto delay $^{ m 40}$
		is active
	delay time $t_{\rm d}$	
	R&S®NRP-Z51	80 ms
	R&S [®] NRP-Z52/-Z55/-Z56/-Z57/-Z58	40 ms
Measurement speed	continuous average	
without averaging	single-triggered	350 s ⁻¹ (typ.)
aperture time = 0.5 ms	buffered ¹⁷	520 s ⁻¹ (typ.)
Zeroing (duration)		10 s
Change of input reflection co-	only for power levels > 15 dBm	< 0.005
efficient with respect to power		

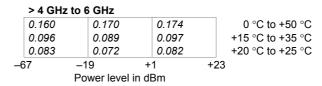
Additional characteristics of the R&S®NRP-Z51/-Z52/-Z55/-Z56/-Z57/-Z58 thermal power sensors (continued)

Calibration uncertainty 41	R&S [®] NRP-Z51/-Z52/-Z55/-Z56/-Z57				
-	DC to 100 MHz	0.040 dB			
	> 100 MHz to 2.4 GHz	0.047 dB			
	> 2.4 GHz to 8.0 GHz	0.054 dB			
	> 8.0 GHz to 12.4 GHz	0.063 dB			
	> 12.4 GHz to 18.0 GHz	0.082 dB			
	> 18.0 GHz to 26.5 GHz	0.085 dB			
	> 26.5 GHz to 33.0 GHz	0.101 dB			
	> 33.0 GHz to 40.0 GHz	0.108 dB			
	> 40.0 GHz to 44.0 GHz	0.138 dB			
	> 44.0 GHz to 50.0 GHz	0.143 dB			
	> 50.0 GHz to 59.0 GHz	0.190 dB			
	> 59.0 GHz to 67.0 GHz	0.235 dB			
	R&S®NRP-Z58				
	DC to 100 MHz	0.041 dB			
	> 100 MHz to 2.4 GHz	0.051 dB			
	> 2.4 GHz to 12.4 GHz	0.074 dB 0.098 dB 0.099 dB			
	> 12.4 GHz to 18.0 GHz				
	> 18.0 GHz to 26.5 GHz				
	> 26.5 GHz to 40.0 GHz	0.118 dB			
	> 40.0 GHz to 50.0 GHz	0.166 dB			
	> 50.0 GHz to 59.0 GHz	0.211 dB			
	> 59.0 GHz to 67.0 GHz	0.253 dB			
	> 67.0 GHz to 80.0 GHz	0.256 dB 0.273 dB			
	> 80.0 GHz to 95.0 GHz				
	> 95.0 GHz to 110.0 GHz	0.294 dB			
Temperature effect 42	DC to 100 MHz	< 0.002 dB/K			
•	> 100 MHz to 50.0 GHz	< 0.004 dB/K			
	> 50.0 GHz to 110.0 GHz	< 0.006 dB/K			
Linearity ⁴³	DC to 67.0 GHz	0.007 dB			
•	> 67.0 GHz to 110.0 GHz	0.010 dB			
Interface to host	power supply	+5 V/0.1 A (USB low-power device)			
	remote control	as a USB device (function) in full-speed mode,			
		compatible with USB 1.0/1.1/2.0 specifications			
	trigger input	differential (0 V/+3.3 V)			
	connector type	ODU Mini-Snap [®] L series,			
	,	six-pole cylindrical straight plug			
	permissible total cable length	≤ 10 m (see also tables on page 57)			
Dimensions	W×H×L	48 mm × 31 mm × 170 mm			
		(1.89 in × 1.22 in × 6.69 in)			
	length including connecting cable	approx. 1.6 m (62.99 in)			
Weight	2 0. 2 2 3 22 3 22 3 22 3	< 0.30 kg (0.66 lb)			


Average power sensors in R&S®Smart Sensor Technology

R&S®NRP-Z91 average power sensor


Frequency range		9 kHz to 6 GHz		
Impedance matching (SWR)	9 kHz to 2.4 GHz	< 1.13 (1.11)	(): .45 00 t05 00	
	> 2.4 GHz to 6.0 GHz	< 1.20 (1.18)	(): +15 °C to +35 °C	
Power measurement range		200 pW to 200 mW (-67 dBm to +23 dBm)		
Max. power	average power	0.4 W (+26 dBm), contin	uous	
	peak envelope power	1.0 W (+30 dBm) for ma	x. 10 µs	
Measurement subranges	path 1	-67 dBm to -14 dBm		
	path 2	-47 dBm to +6 dBm		
	path 3	-27 dBm to +23 dBm		
Transition regions	with automatic path selection ³	(-19 ± 1) dBm to $(-13 \pm$	1) dBm	
		$(+1 \pm 1)$ dBm to $(+7 \pm 1)$	dBm	
Dynamic response	rise time 10 %/90 %	< 5 ms		
Acquisition	sample rate (continuous)	133.358 kHz		
Zero offset	initial, without zeroing			
	path 1	< 470 (100) pW		
	path 2	< 47 (10) nW		
	path 3	< 4.7 (1) µW		
	after external zeroing 6,7			
	path 1	< 104 (64) pW		
	path 2	< 10.0 (6) nW	(): typical at 1 GHz	
	path 3	< 1.00 (0.6) µW	+15 °C to +35 °C	
Zero drift ⁸	path 1	< 35 (0) pW		
	path 2	< 3.0 (0) nW		
	path 3	< 0.3 (0) µW		
Measurement noise 9	path 1	< 65 (40) pW		
	path 2	< 6.3 (4) nW		
	path 3	< 0.63 (0.4) µW		


R&S®NRP-Z91 average power sensor (continued)

Uncertainty for absolute power measurements $^{\rm 10}$ in dB

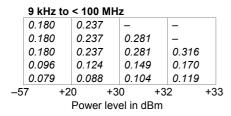
Uncertainty for relative power measurements ¹¹ in dB

	9 kHz	to < 20) kHz					
+23	0.226		0.229		0.027			
	0.084		0.080		0.022			
+7	0.046		0.044		0.022			
+1	0.226		0.027		0.229			
	0.083		0.022		0.080			
-13	0.045		0.022		0.044			
-19	0.023		0.226		0.226			
	0.022		0.083		0.084			
-67	0.022		0.045		0.046			
-6	7	-19/-	13	+1	/+7	+23		
	Power level in dRm							

	20 kHz to	o < 100 MI	Hz					
+23	0.206	0.21	15 0.0	027	0 °C to +50 °C			
	0.082	0.07	78 0.0	022	+15 °C to +35 °C			
+7	0.046	0.04	14 0.0	022	+20 °C to +25 °C			
+1	0.205	0.02	27 0.2	215	0 °C to +50 °C			
	0.081	0.02	22 0.0	078	+15 °C to +35 °C			
-13	0.044	0.02	22 0.0)44	+20 °C to +25 °C			
-19	0.023	0.20	0.2	206	0 °C to +50 °C			
	0.022	0.08	31 0.0	082	+15 °C to +35 °C			
-67	0.022	0.04	14 0.0	046	+20 °C to +25 °C			
-67 -19/-13 +1/+7 +23								
	Power level in dBm							

	100 M	Hz to 4	GHz				
+23	0.209		0.218		0.038		
	0.088		0.085		0.032		
+7	0.055		0.047		0.031		
+1	0.206		0.028		0.218		
	0.083		0.022		0.085		
-13	0.048		0.022		0.047		
-19	0.023		0.206		0.209		
	0.022		0.083		0.088		
-67	0.022		0.048		0.055		
-67		-19/ - 1	13	+1/+	-7	+23	
Power level in dBm							

	> 4 GHz to 6 GHz							
+23	0.215	0.223	0.049		0 °C to +50 °C			
	0.097	0.093	0.044		+15 °C to +35 °C			
+7	0.066	0.059	0.043		+20 °C to +25 °C			
+1	0.210	0.030	0.223		0 °C to +50 °C			
	0.088	0.022	0.093		+15 °C to +35 °C			
-13	0.054	0.022	0.059		+20 °C to +25 °C			
-19	0.024	0.210	0.215		0 °C to +50 °C			
	0.022	0.088	0.097		+15 °C to +35 °C			
-67	0.022	0.054	0.066		+20 °C to +25 °C			
-67	7	19/–13 +	1/+7	+23				
	Power level in dBm							

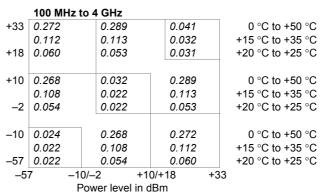

R&S®NRP-Z92 average power sensor

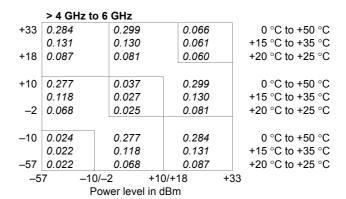
Specifications apply when the power sensor is operated together with the RF power attenuator supplied. Please refer to the specifications of the R&S $^{\otimes}$ NRP-Z91 when operating the power sensor section alone.

Frequency range		9 kHz to 6 GHz		
Impedance matching (SWR)	9 kHz to 2.4 GHz	< 1.14		
	> 2.4 GHz to 6.0 GHz	< 1.20		
Power measurement range	continuous average	2 nW to 2 W (-57 dBm t	o +33 dBm)	
Max. power	average power	3 W (+35 dBm), continuo	ous (see diagram)	
	peak envelope power	10 W (+40 dBm) for max	a. 10 μs	
Measurement subranges	path 1	-57 dBm to -4 dBm		
	path 2	-37 dBm to +16 dBm		
	path 3	-17 dBm to +33 dBm		
Transition regions	with automatic path selection ³	(-9 ± 1.5) dBm to (-3 ± 1)	1.5) dBm	
		(+11 ± 1.5) dBm to (+17	± 1.5) dBm	
Dynamic response	rise time 10 %/90 %	< 5 ms		
Acquisition	sample rate (continuous)	133.358 kHz		
Zero offset	initial, without zeroing			
	path 1	< 5.9 (1.2) nW		
	path 2	< 590 (120) nW		
	path 3	< 59 (12) μW		
	after external zeroing 6 7			
	path 1	< 1.3 (0.7) nW		
	path 2	< 120 (60) nW	(): typical at 1 GHz	
	path 3	< 12 (6) µW	+15 °C to +35 °C	
Zero drift ⁸	path 1	< 0.4 (0) nW		
	path 2	< 40 (0) nW		
	path 3	< 4 (0) µW		
Measurement noise 9	path 1	< 0.8 (0.4) nW		
	path 2	< 80 (40) nW		
	path 3	< 8 (4) µW		

R&S®NRP-Z92 average power sensor (continued)

Uncertainty for absolute power measurements ¹⁰ in dB

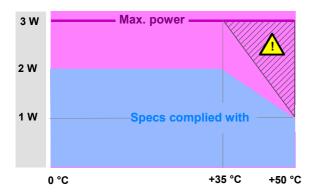



	100 MH	Iz to < 4 G			
	0.186	0.242	_	_	0 °C to +50 °C
	0.186	0.242	0.285	_	0 °C to +40 °C
	0.186	0.242	0.285	0.320	0 °C to +35 °C
	0.106	0.133	0.157	0.176	+15 °C to +35 °C
	0.085	0.098	0.113	0.128	+20 °C to +25 °C
-5	7 +	-20 +:	30 +	32 +3	3
		Power le	vel in dBm	1	

	4 GHz				
	0.203	0.255	_	_	0 °C to +50 °C
	0.203	0.255	0.296	_	0 °C to +40 °C
	0.203	0.255	0.296	0.330	0 °C to +35 °C
	0.133	0.156	0.176	0.194	+15 °C to +35 °C
	0.116	0.125	0.137	0.151	+20 °C to +25 °C
-5	7	+20 +3	30 +	32 +3	3
		Power lev	el in dBm	1	

Uncertainty for relative power measurements 11 12 in dB

	9 kHz t	o < 10	0 MHz				
+33	0.286		0.298		0.031		
	0.108		0.109		0.022		
+18	0.052		0.045		0.022		
+10	0.283		0.031		0.298		
	0.108		0.022		0.109		
-2	0.051		0.022		0.045		
-10	0.023		0.283		0.286		
	0.022		0.108		0.108		
-57	0.022		0.051		0.052		
-5	57	-10/-	2	+10	/+18	+33	
Power level in dBm							


Additional characteristics of the R&S®NRP-Z91/-Z92 average power sensors

Sensor type		three-path diode power sensor; R&S®NRP-Z92
		with preceding RF power attenuator
Measurand		power of incident wave
		power of source (DUT) into 50 Ω ¹³
RF connector		N (male)
RF attenuation ¹⁴	R&S [®] NRP-Z91	not applicable
	R&S [®] NRP-Z92	10 dB
Measurement function	stationary and recurring waveforms	continuous average
Continuous average function	measurand	mean power over recurring acquisition interval
•	aperture	1 ms to 300 ms (20 ms default)
	window function	uniform or von Hann 15
	duty cycle correction ¹⁶	0.001 % to 99.999 %
	capacity of measurement buffer ¹⁷	1 to 1024 results
Averaging filter	modes	auto off (fixed averaging number)
troraging into	modes	auto on (continuously auto-adapted)
		auto once (automatically fixed once)
	auto off	auto once (automatically fixed once)
	averaging number	2^{N} ; $N = 0$ to 16
	0 0	2 , 10 = 0 10 10
	auto on/once	
	normal operating mode	averaging number adapted to resolution setting
		and power to be measured
	fixed noise operating mode	averaging number adapted to specified noise content
	result output	Contont
	moving mode	continuous, independent of averaging number
	rate	can be limited to 0.1 s ⁻¹
	repeat mode	only final result
Attenuation correction	function	corrects the measurement result by means of a fixed factor (dB offset)
	range	-200.000 dB to +200.000 dB
Embedding ²⁰	function	incorporates a two-port device at the sensor input
3		so that the measurement plane is shifted to the
		input of this device
	parameters	S_{11} , S_{21} , S_{12} and S_{22} of device
	frequencies	1 to 1000
Gamma correction	function	removes the influence of impedance mismatch
	Tarrottori	from the measurement result so that the power of
		the source (DUT) into 50 Ω can be read
	parameters	magnitude and phase of reflection coefficient of
	parameters	source (DUT)
Frequency response correction	function	takes the frequency response of the sensor
requestoy response correction	Tariotion	section and of the RF power attenuator into
		account (if applicable)
	narameter	center frequency of test signal
	parameter	
	residual uncertainty	see specification of calibration uncertainty and
		uncertainty for absolute and relative power
21		measurements
Measurement time ²¹	continuous average	$2 \times (aperture + 5 ms) \times 2^N - 3.4 ms + t_d$
2 ^N : averaging number		t _d must only be taken into account with activated
		auto delay (1 ms to 20 ms depending on temperature) 40
Zeroing (duration)	depends on setting of averaging filter	temperature)
(auto on	4 s
	auto off, integration time ²²	
	< 4 s	4 s
	4 s to 16 s	integration time
	> 16 s	16 s

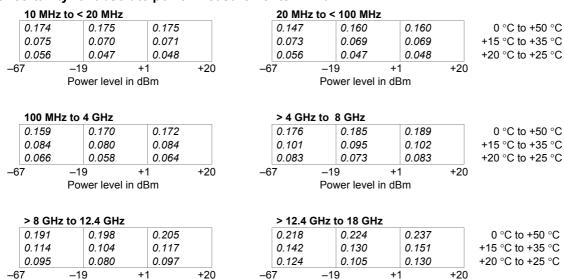
Additional characteristics of the R&S®NRP-Z91/-Z92 average power sensors (continued)

Measurement error due to		n = 2	n = 3	n: multiple			
harmonics ²³	–30 dBc	< 0.001 dB	< 0.003 dB	of carrier			
	–20 dBc	< 0.002 dB	< 0.002 dB < 0.010 dB frequency				
	-10 dBc	< 0.010 dB	< 0.040 dB				
Measurement error due to modulation 24	general	depends on CC signal	DF and RF ban	dwidth of test			
	WCDMA (3GPP test model 1-64)						
	worst case	-0.02 dB to +0.0)7 dB				
	typical	-0.01 dB to +0.0	03 dB				
Change of input reflection co-	9 kHz to 2.4 GHz	< 0.02 (0.01)					
efficient with respect to power 25	> 2.4 GHz	< 0.03 (0.02)	(): +15 °C to	+35 °C			
Calibration uncertainty ²⁶	R&S [®] NRP-Z91	path 1	path 2	path 3			
•	9 kHz to < 100 MHz	0.056 dB	0.047 dB	0.048 dB			
	100 MHz to 4.0 GHz	0.066 dB	0.057 dB	0.057 dB			
	> 4.0 GHz to 6.0 GHz	0.083 dB	0.071 dB	0.072 dB			
	R&S [®] NRP-Z92 ²⁷	path 1	path 2	path 3			
	9 kHz to < 100 MHz	0.078 dB	0.072 dB	0.073 dB			
	100 MHz to 4.0 GHz	0.084 dB	0.077 dB	0.077 dB			
	> 4.0 GHz to 6.0 GHz	0.110 dB	0.095 dB	0.095 dB			
Interface to host	power supply	+5 V/0.2 A (USE	+5 V/0.2 A (USB high-power device)				
	remote control		as a USB device (function) in full-speed mode, compatible with USB 1.0/1.1/2.0 specifications				
	trigger input	differential (0 V/-	+3.3 V)				
	connector type	ODU Mini-Snap					
		six-pole cylindric	cal straight plug				
	permissible total cable length	≤ 10 m (see also	tables on page	e 57)			
Dimensions (W × H × L)	R&S®NRP-Z91	48 mm × 31 mm	× 170 mm				
		(1.89 in × 1.22 ir	า × 6.69 in)				
	R&S [®] NRP-Z92	48 mm × 31 mm	× 214 mm				
		(1.89 in × 1.22 ir	า × 8.42 in)				
	length including connecting cable						
	model .02	approx. 1.6 m (6	62.99 in)				
	model .04	approx. 0.6 m (2	23.62 in)				
Weight	R&S [®] NRP-Z91	< 0.30 kg (0.66 l	b)				
	R&S [®] NRP-Z92	< 0.37 kg (0.82 l	(b)				

Power rating of the R&S®NRP-Z92

Hatched area: The maximum surface temperatures permitted by IEC 1010-1 are exceeded. Provide protection against inadvertent contacting or apply only a short-term load to the power sensor.

Level control sensors in R&S®Smart Sensor Technology


R&S®NRP-Z28 level control sensor

Frequency range	10 MHz to 18 GHz				
Impedance matching (SWR) and		input	output	insertion loss 45	
insertion loss		SWR	SWR 44	(): typical	
meerii i i i i i i i i i i i i i i i i i	10 MHz to 2.4 GHz	< 1.35	< 1.11	< 8.0 (7.0) dB	
	> 2.4 GHz to 4.0 GHz	< 1.45	< 1.15	< 8.5 (7.5) dB	
	> 4.0 GHz to 8.0 GHz	< 1.75	< 1.13	< 9.5 (8.5) dB	
	> 8.0 GHz to 12.4 GHz	< 1.80	< 1.30	< 10.5 (9) dB	
	> 12.4 GHz to 18.0 GHz	< 1.90	< 1.30	< 11.0 (10) dB	
Power messurement renge					
Power measurement range RF output	continuous average 200 pW to 100 mW (-67 dBm to +20 dBr burst average 200 nW to 100 mW (-37 dBm to +20 dBr				
RF Output	burst average				
	timeslot/gate average			dBm to +20 dBm) 1	
M	trace	10 nW to 100 mW (–50 dBm to +20 dBm) ²			
Max. power	average power	0.714//.00	5 -ID\		
RF input	10 MHz to 2.4 GHz	0.7 W (+28.			
	> 2.4 GHz to 8.0 GHz	0.9 W (+29.		continuous	
	> 8.0 GHz to 12.4 GHz	1.1 W (+30.		_	
	> 12.4 GHz to 18.0 GHz	1.3 W (+31.			
	peak envelope power			ge power (for 10 µs)	
Measurement subranges	path 1	–67 dBm to			
	path 2	–46 dBm to	+6 dBm		
	path 3	–26 dBm to			
Transition regions	with automatic path selection ³		dBm to (-13 ⁻¹		
			3m to (+7 ^{-1/+2}) dBm	
Dynamic response	video bandwidth	> 50 kHz (1	00 kHz)		
	single-shot bandwidth	> 50 kHz (100 kHz) (): +15 °C to		(): +15 °C to +35 °C	
	rise time 10 %/90 %		< 8 µs (4 µs)		
Acquisition	sample rate (continuous)	133.358 kH	z (default) or 1	119.467 kHz ⁴	
Triggering	internal				
	threshold level range	-40 dBm to +20 dBm			
	threshold level accuracy	identical to uncertainty for absolute power			
		measurements			
	threshold level hysteresis	0 dB to 10 d	0 dB to 10 dB		
	dropout ⁵	0 s to 10 s			
	external	see R&S®N	RP2 base unit	, R&S®NRP-Z3 USB	
		adapter cab	ole or R&S®NR	P-Z5 USB sensor hub	
	slope (external, internal)	pos./neg.			
	delay	_5 ms to +1	00 s		
	hold-off	0 s to 10 s			
	resolution (delay, hold-off, dropout)	sample peri	od		
	source	internal, ext	ernal, immedia	ate, bus, hold	
Zero offset	initial, without zeroing				
	path 1	< 505 [600]	(100) pW		
	path 2	< 52 [60] (1	· / ·		
	path 3	< 5.2 [6] (1)			
	after external zeroing 6,7	[-] (- /	P	(): typical at 1 GHz	
	path 1	< 114 [132]	(67) pW	+15 °C to +35 °C	
	path 2	< 11 [13] (6			
	path 3	< 1.1 [1.3] ([]: 8 GHz to 18 GHz	
Zero drift ⁸	path 1	< 39 [44] (0		- ·	
Loro unit	path 2	< 3.3 [3.8] (, ı		
	path 3	< 0.33 [0.38			
Measurement noise 9		< 72 [83] (4		-	
measurement noise	path 1 path 2	< 7 [8] (4) n		_	
	•			_	
	path 3	< 0.7 [0.8] (υ. 4) μνν		

R&S®NRP-Z28 level control sensor (continued)

Uncertainty for absolute power measurements $^{\rm 10}$ in dB

Power level in dBm

Power level in dBm

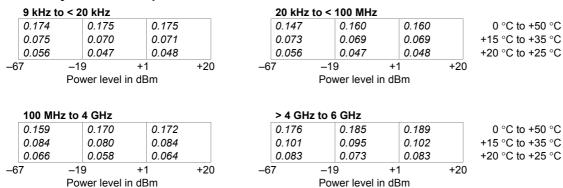
R&S®NRP-Z28 level control sensor (continued)

Unc	ertainty f	or relative	power meas	uremen	its ¹¹ in d	IB		
	10 MHz to	< 20 MHz			20 MHz to	o < 100 MHz		
+20	0.226	0.229	0.027	+20	0.206	0.215	0.027	0 °C to +50 °C
	0.084	0.080	0.022		0.082	0.078	0.022	+15 °C to +35 °C
+7	0.046	0.044	0.022	+7	0.046	0.044	0.022	+20 °C to +25 °C
+1	0.226	0.027	0.229	+1	0.205	0.027	0.215	0 °C to +50 °C
	0.083	0.022	0.080		0.081	0.022	0.078	+15 °C to +35 °C
-13	0.045	0.022	0.044	-13	0.044	0.022	0.044	+20 °C to +25 °C
-19	0.023	0.226	0.226	-19	0.023	0.205	0.206	0 °C to +50 °C
	0.022	0.083	0.084		0.022	0.081	0.082	+15 °C to +35 °C
-67	0.022	0.045	0.046	-67	0.022	0.044	0.046	+20 °C to +25 °C
-6	7 –19/	-13 ±0/-	+8 +20	_	67 –1	9/–13 ±0)/+8 -	- 20
	Р	ower level in d	Bm			Power level in	dBm	
	100 MHz t	o 4 GHz			> 4 GHz t	0 8 GH2		
+20		0.218	0.038	+20		0.223	0.049	0 °C to +50 °C
. 20	0.203	0.085	0.032	120	0.097	0.093	0.044	+15 °C to +35 °C
+7	0.055	0.047	0.032	+7	0.066	0.059	0.043	+20 °C to +25 °C
			1				7	

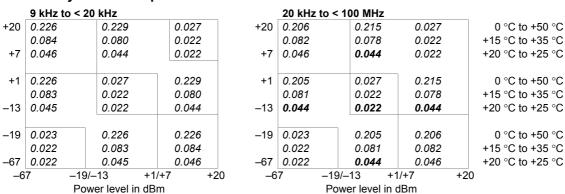
	100 MHz t	o 4 GHz	
+20	0.209	0.218	0.038
	0.088	0.085	0.032
+7	0.055	0.047	0.031
+1	0.206	0.028	0.218
	0.083	0.022	0.085
-13	0.048	0.022	0.047
-19	0.023	0.206	0.209
	0.022	0.083	0.088
-67	0.022	0.048	0.055
-6	7 –19/	_13 +1/	+7 +20
	Po	wer level in d	Bm

	7 4 GI 12 K	OGIIZ		
+20	0.215	0.223	0.049	0 °C to +50 °C
	0.097	0.093	0.044	+15 °C to +35 °C
+7	0.066	0.059	0.043	+20 °C to +25 °C
+1	0.210	0.030	0.223	0 °C to +50 °C
	0.088	0.022	0.093	+15 °C to +35 °C
-13	0.054	0.022	0.059	+20 °C to +25 °C
-19	0.024	0.210	0.215	0 °C to +50 °C
	0.022	0.088	0.097	+15 °C to +35 °C
-67	0.022	0.054	0.066	+20 °C to +25 °C
-	67 –19	/–13 +	1/+7 +2	20
	F	Power level in	dBm	

	> 8 GHz to	12.4 GHz	
+20	0.224	0.231	0.064
	0.111	0.106	0.061
+7	0.084	0.077	0.060
+1	0.216	0.034	0.231
	0.096	0.027	0.106
-13	0.063	0.025	0.077
-19	0.024	0.216	0.224
	0.022	0.096	0.111
-67	0.022	0.063	0.084
-6	7 –19/-	-13 +1/	+7 +20
	Po	wer level in dE	3m


	> 12.4 GHz	to 18 GHz		
+20	0.244	0.245	0.086	0 °C to +50 °C
	0.135	0.128	0.084	+15 °C to +35 °C
+7	0.110	0.102	0.083	+20 °C to +25 °C
+1	0.230	0.040	0.245	0 °C to +50 °C
	0.112	0.034	0.128	+15 °C to +35 °C
-13	0.079	0.033	0.102	+20 °C to +25 °C
-19	0.024	0.230	0.244	0 °C to +50 °C
	0.022	0.112	0.135	+15 °C to +35 °C
-67	0.022	0.079	0.110	+20 °C to +25 °C
-	67 –19	/–13 +1	/+7 +:	20
	Po	wer level in dB	sm	

R&S®NRP-Z98 level control sensor


Frequency range		9 kHz to 6 G	GHz			
Impedance matching (SWR) and insertion loss		input SWR	output SWR ⁴⁴	insertion loss ⁴⁵ (): typical		
	9 kHz to 2.4 GHz	< 1.35	< 1.11	< 8.0 (7.0) dB		
	> 2.4 GHz to 4.0 GHz	< 1.45	< 1.15	< 8.5 (7.5) dB		
	> 4.0 GHz to 6.0 GHz	< 1.75	< 1.75 < 1.22 < 9.5 (8.5) dB			
Power measurement range RF output	continuous average	200 pW to 1	00 mW (–67 d	dBm to +20 dBm)		
Max. power	average power					
RF input	9 kHz to 2.4 GHz	0.7 W (+28.	5 dBm)	continuous		
	> 2.4 GHz to 6.0 GHz	0.9 W (+29.	5 dBm)			
	peak envelope power	7.5 dB abov	e max. avera	ge power (for 10 µs)		
Measurement subranges	path 1	-67 dBm to	-14 dBm			
	path 2	-46 dBm to	-46 dBm to +6 dBm			
	path 3	-26 dBm to	–26 dBm to +20 dBm			
Transition regions	with automatic path selection ³	with automatic path selection 3 (-19 $^{-1/+2}$) dBm to (-13 $^{-1/+2}$) dBm to (+7 $^{$				
Dynamic response	rise time 10 %/90 %	< 5 ms	,	,		
Acquisition	sample rate (continuous)	133.358 kHz	Z			
Zero offset	initial, without zeroing					
	path 1	< 505 (100)	pW			
	path 2	< 52 (10) nV	N			
	path 3	< 5.2 (1) µW	V			
	after external zeroing 6,7					
	path 1	< 114 (67) p	W			
	path 2	< 11 (6) nW	1	(): typical at 1 GHz		
	path 3	< 1.1 (0.6) µ	Wı	+15 °C to +35 °C		
Zero drift ⁸	path 1	< 39 (0) pW	1			
	path 2	< 3.3 (0) nW	v			
	path 3	< 0.33 (0) µ'				
Measurement noise 9	path 1	< 72 (42) pV	N			
	path 2	< 7 (4) nW				
	path 3	< 0.7 (0.4) µ	W			

R&S®NRP-Z98 level control sensor (continued)

Uncertainty for absolute power measurements 10 in dB

Uncertainty for relative power measurements ¹¹ in dB

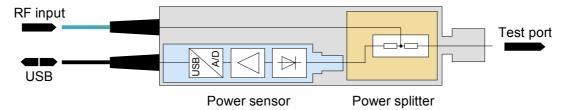
	100 MHz to	o 4 GHz	
+20	0.209	0.218	0.038
	0.088	0.085	0.032
+7	0.055	0.047	0.031

+7	0.055		0.047		0.031			
+1	0.206		0.028		0.218			
	0.083		0.022		0.085			
-13	0.048		0.022		0.047			
-19	0.023		0.206		0.209			
	0.022		0.083		0.088			
-67	0.022		0.048		0.055			
-6	7	-19	9/–13	+1/	+7 +20			
	Power level in dBm							

	> 4 GHz to 6 GHz								
+20	0.215	0.22	23	0.049					
	0.097	0.09	3	0.044					
+7	0.066	0.05	9	0.043					
+1	0.210	0.03	80	0.223					
	0.088	0.02	2	0.093					
-13	0.054	0.02	22	0.059					
-19	0.024	0.21	0	0.215					
	0.022	0.08	8	0.097					
-67	0.022	0.05	4	0.066					
-67 -19/-13 +1/+7 +20									
Power level in dBm									

Additional characteristics of the R&S®NRP-Z28/-Z98 level control sensors

Shaded areas apply only to the R&S®NRP-Z28.


Sensor type		three-path diode power sensor combined with a			
		resistive power splitter in a power leveling setup			
		(see diagram at the end of this section)			
Measurand		power available on a 50 Ω load			
		power of wave emanating at RF output ¹³			
RF connectors		N (male)			
Measurement functions	stationary and recurring waveforms	continuous average			
		burst average			
		timeslot/gate average			
		trace			
	single events	trace			
Continuous average function	measurand	mean power over recurring acquisition interval			
	aperture				
	R&S [®] NRP-Z28	10 µs to 300 ms (20 ms default)			
	R&S [®] NRP-Z98	1 ms to 300 ms (20 ms default)			
	window function	uniform or von Hann 15			
	duty cycle correction ¹⁶	0.001 % to 99.999 %			
	capacity of measurement buffer 17	1 to 1024 results			
Burst average function	measurand	mean power over burst portion of recurring signal (trigger settings required)			
	detectable burst width	20 μs to 50 ms			
	minimum gap between bursts	10 µs			
	dropout period ¹⁸ for burst end	0 s to 3 ms			
	detection				
	exclusion periods ¹⁹				
	start	0 to burst width			
	end	0 s to 3 ms			
	resolution (dropout and exclusion periods)	sample period (≈ 8 µs)			
Timeslot/gate average function	measurand	mean power over individual timeslots/gates of recurring signal			
	number of timeslots/gates	1 to 128 (consecutive)			
	nominal length	10 µs to 0.1 s			
	start of first timeslot/gate	at delayed trigger event			
	exclusion periods ¹⁹				
	start	0 to nominal length			
	end	0 s to 3 ms			
	resolution (nominal length and	sample period (≈ 8 µs)			
	exclusion periods)	(o po)			
Trace function	measurand	mean power over pixel length			
	acquisition	instant power over pinerioniga.			
	length (△)	100 µs to 300 ms			
	start (referenced to delayed trigger)	–5 ms to +100 s			
	result	1 0 110 0 100 0			
	pixels (M)	1 to 1024			
	resolution (\(\Delta/M\)				
	non recurring or internally	≥ 10 µs			
	triggered	0 40			
	recurring and externally	≥ 2.5 µs			
	triggered				

Additional characteristics of the R&S®NRP-Z28/-Z98 level control sensors (continued)

Shaded areas apply only to the R&S®NRP-Z28. Averaging filter auto off(fixed averaging number) auto on(continuously auto-adapted) auto once(automatically fixed once) auto off supported measurement functions averaging number 2^N ; N = 0 to 16 (13 for trace function) auto on/once supported measurement functions continuous average, burst average, timeslot/gate normal operating mode averaging number adapted to resolution setting and power to be measured fixed noise operating mode averaging number adapted to specified noise result output moving mode continuous, independent of averaging number can be limited to 0.1 s⁻¹ rate repeat mode only final result Attenuation correction corrects the measurement result by means of a function fixed factor (dB offset) range -200.000 dB to +200.000 dB **Embedding** function incorporates a two-port device at the RF output so that the measurement plane is shifted to the output of this device parameters S_{11} , S_{21} , S_{12} and S_{22} of device frequencies 1 to 1000 Gamma correction function removes the influence of impedance mismatch from the measurement result so that the power of the wave emanating at the RF output can be parameters magnitude and phase of reflection coefficient of Frequency response correction function takes the frequency response of the sensor section and of the power splitter into account parameter center frequency of test signal residual uncertainty see specification of calibration uncertainty and uncertainty for absolute and relative power measurements Measurement time 21 continuous average $2 \times (aperture + 145 \mu s) \times 2^{N} + t_{7}$ R&S®NRP-Z28 2^N: averaging number *t*_z : < 1.6 ms $2 \times (aperture + 5 ms) \times 2^{N} - 3.4 ms + t_{d}$ T: set number of timeslots R&S®NRP-Z98 w: nominal length of timeslot t_d must be taken into account with activated auto delay (1 ms to 20 ms depending on temperature) 40 buffered 17, without averaging $2 \times (aperture + 250 \mu s) \times buffer size + t_z$ timeslot/gate average $\leq 2 \times \text{signal period} \times (2^N + \frac{1}{2}) + t_z$ signal period – $T \times w > 100 \mu s$ all other cases $\leq 4 \times \text{signal period} \times (2^N + \frac{1}{4}) + t_7$ Zeroing (duration) depends on setting of averaging filter auto on auto off, integration time 22 < 4 s 4 s 4 s to 16 s integration time > 16 s 16 s Measurement error due to n = 2n = 3harmonics 23 -30 dBc < 0.001 dB < 0.003 dB n: multiple of carrier frequency -20 dBc < 0.002 dB < 0.010 dB -10 dBc < 0.010 dB < 0.040 dB

Additional characteristics of the R&S®NRP-Z28/-Z98 level control sensors (continued)

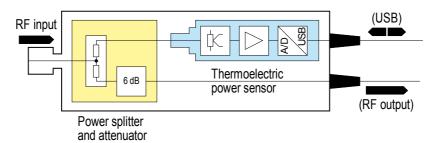
Measurement error due to modulation ²⁴	general	depends on C signal	CDF and RF bar	ndwidth of test		
	WCDMA (3GPP test model 1-64)					
	worst case	worst case -0.02 dB to +0.07 dB				
	typical	-0.01 dB to +	0.03 dB			
Calibration uncertainty ²⁶		path 1	path 2	path 3		
(R&S®NRP-Z98 up to 6 GHz only)	< 100 MHz	0.056 dB	0.047 dB	0.048 dB		
	100 MHz to 4.0 GHz	0.066 dB	0.057 dB	0.058 dB		
	> 4.0 GHz to 8.0 GHz	0.083 dB	0.072 dB	0.072 dB		
	> 8.0 GHz to 12.4 GHz	0.095 dB	0.077 dB	0.077 dB		
	> 12.4 GHz to 18.0 GHz	0.124 dB	0.100 dB	0.101 dB		
Interface to host	power supply	+5 V/0.2 A (U	+5 V/0.2 A (USB high-power device)			
	remote control		as a USB device (function) in full-speed mode, compatible with USB 1.0/1.1/2.0 specifications			
	trigger input	<u> </u>	differential (0 V/+3.3 V)			
	connector type		ODU Mini-Snap® L series,			
	3,00		six-pole cylindrical straight plug			
	permissible total cable length	≤ 10 m (see a	≤ 10 m (see also tables on page 57)			
Dimensions	W×H×L	48 mm × 50 n	48 mm × 50 mm × 250 mm			
		(1.89 in × 1.9	7 in × 9.84 in)			
	length including connecting cable	approx. 1.75 r	approx. 1.75 m (68.89 in)			
Weight		< 0.7 kg (1.54	· lb)			

Block diagram of the R&S®NRP-Z28/-Z98 level control sensors.

Power sensor modules in R&S®Smart Sensor Technology

R&S®NRP-Z27/-Z37 power sensor modules

Specifications from 18 GHz to 26.5 GHz apply only to the R&S $^{\otimes}$ NRP-Z37.


Frequency range	R&S [®] NRP-Z27	DC to 18 GHz			
	R&S [®] NRP-Z37	DC to 26.5 GHz			
Impedance matching (SWR)	RF input	R&S [®] NRP-Z27	R&S	®NRP-Z37	
	DC to 2.0 GHz	< 1.15	< 1.1	< 1.15	
	> 2.0 GHz to 4.2 GHz < 1.18		< 1.18		
	> 4.2 GHz to 8.0 GHz	< 1.23	< 1.2	23	
	> 8.0 GHz to 12.4 GHz	< 1.25	< 1.2	25	
	> 12.4 GHz to 18.0 GHz	< 1.35	< 1.3	30	
	> 18.0 GHz to 26.5 GHz	_	< 1.4		
	RF output	R&S [®] NRP-Z27	R&S	®NRP-Z37	
	DC to 8.0 GHz	< 1.6	< 1.6	3	
	> 8.0 GHz to 26.5 GHz	< 2.0	< 2.0)	
Power measurement range		4 μW to 400 m\	N (-24 dBm to +	+26 dBm),	
-		continuous, in a		•	
Max. power	average power	0.5 W (+27 dBr	n), continuous		
		1.0 W (+30 dBr	n) for max. 10 m	ninutes	
	peak envelope power	30 W (45 dBm)			
Acquisition	sample rate	20.833 kHz (sig	ıma-delta)		
Zero offset	after external zeroing 6 7	< 400 nW (typic	< 400 nW (typically 200 nW at 1 GHz)		
Zero drift ⁸		< 160 nW			
Measurement noise ⁹		< 240 nW (typic	ally 120 nW at	1 GHz)	
Uncertainty for absolute power		+20 °C to	+15 °C to	0 °C to	
measurements 46		+25 °C	+35 °C	+50 °C	
	with matched load on RF output (S	WR < 1.05)			
	DC to < 100 MHz	0.070 dB	0.077 dB	0.103 dB	
	100 MHz to 4.2 GHz	0.075 dB	0.082 dB	0.106 dB	
	> 4.2 GHz to 8.0 GHz	0.087 dB	0.094 dB	0.119 dB	
	> 8.0 GHz to 12.4 GHz	0.093 dB	0.101 dB	0.130 dB	
	> 12.4 GHz to 18.0 GHz	0.112 dB	0.121 dB	0.151 dB	
	> 18.0 GHz to 26.5 GHz	0.122 dB	0.137 dB	0.190 dB	
	with R&S®FSMR26 connected to R	F output	·		
	DC to < 100 MHz	0.104 dB	0.109 dB	0.128 dB	
	100 MHz to 4.2 GHz	0.116 dB	0.120 dB	0.138 dB	
	> 4.2 GHz to 8.0 GHz	0.163 dB	0.166 dB	0.181 dB	
	> 8.0 GHz to 18.0 GHz	0.183 dB	0.187 dB	0.207 dB	
	> 18.0 GHz to 26.5 GHz	0.226 dB	0.235 dB	0.269 dB	
	with R&S [®] FSMR26 connected to R				
	DC to < 100 MHz	0.067 dB	0.074 dB	0.101 dB	
	100 MHz to 4.2 GHz	0.077 dB	0.083 dB	0.107 dB	
	> 4.2 GHz to 8.0 GHz	0.092 dB	0.099 dB	0.123 dB	
	> 8.0 GHz to 12.4 GHz	0.099 dB	0.107 dB	0.135 dB	
	> 12.4 GHz to 18.0 GHz	0.122 dB	0.130 dB	0.159 dB	
	> 18.0 GHz to 26.5 GHz	0.154 dB	0.167 dB	0.212 dB	
Uncertainty for relative power measurements 47		0.032 dB	<u>'</u>	·	

Additional characteristics of the R&S®NRP-Z27/-Z37 power sensor modules

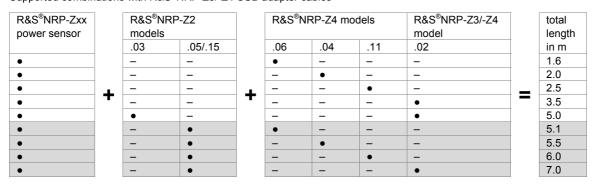
Sensor type		thermoelectric power sensor with signal pick- at RF output (see diagram at the end of this section)			
Measurand		power of incident wave			
		power of source (DUT) into 50 Ω ¹³			
RF connectors	input	, ,			
	R&S®NRP-Z27	N (male)			
	R&S®NRP-Z37	3.5 mm (male)			
	RF signal output	3.5 mm (male)			
Insertion loss	DC to 2.0 GHz	< 14 (12.5) dB			
Between RF input and RF output	> 2.0 GHz to 4.2 GHz	< 15 (13.5) dB			
Dottioon in input and it is output	> 4.2 GHz to 8.0 GHz	< 16 (14.0) dB	(): typical		
	> 8.0 GHz to 12.4 GHz	< 17 (14.5) dB	(). () p.oa.		
	> 12.4 GHz to 18.0 GHz	< 18 (15.5) dB			
	> 18.0 GHz to 26.5 GHz	< 19 (16.5) dB			
Measurement function	stationary and recurring waveforms	continuous average			
	•		ing acquicition interval		
Continuous average function	measurand	mean power over recurr			
	aperture	1 ms to 100 ms (20 ms of uniform or von Hann 15	ueiauit)		
	window function				
	duty cycle correction ¹⁶	0.001 % to 99.999 %			
	capacity of measurement buffer 17	1 to 1024 results	1 \		
Averaging filter	modes	auto off (fixed averaging			
		auto on (continuously au			
		auto once (automatically fixed once)			
	auto off	-N			
	averaging number 2^N ; $N = 0$ to 16				
	auto on/once				
	normal operating mode	averaging number adapted to resolution setting and power to be measured			
	fixed noise operating mode	averaging number adapted to specified noise content			
	result output				
	moving mode	continuous, independen	t of averaging number		
	rate	can be limited to 0.1 s ⁻¹	<u> </u>		
	repeat mode	only final result			
Attenuation correction	function	corrects the measurement result by means of			
		fixed factor (dB offset)	, , , , , , , , , , , , , , , , , , , ,		
	range	-200.000 dB to +200.00	0 dB		
Gamma correction	function	removes the influence o			
		from the measurement r	•		
		of the source (DUT) into	50 Ω can be read		
	parameters	magnitude and phase of source (DUT)			
Frequency response correction	function	takes the frequency respondence section and of the power			
	noromotor	-	<u> </u>		
	parameter	center frequency of test signal			
	residual uncertainty	see specification of calibration uncertaint			
Load interference correction	function	uncertainty for absolute			
Load interference correction	function	removing the influence of			
		signal output from the poresult	ower measurement		
	parameters	magnitude and phase of reflection coefficient cload			

Additional characteristics of the R&S®NRP-Z27/-Z37 power sensor modules (continued)

Measurement time ²¹		2 × (aperture + 450 μs) × 3	$2^{N} + 4 \text{ ms} + t_{d}$		
2 ^N : averaging number		t _d (80 ms) must be taken in	nto account when auto		
		delay 40 is active			
Zeroing (duration)	depends on setting of averaging filter				
	auto on	4 s			
	auto off, integration time 22				
	< 4 s	4 s			
	4 s to 16 s	integration time			
	> 16 s	16 s			
Calibration uncertainty 48	DC to < 100 MHz	0.063 dB			
-	100 MHz to 4.2 GHz	0.070 dB			
	> 4.2 GHz to 8.0 GHz	0.082 dB			
	> 8.0 GHz to 12.4 GHz	0.088 dB			
	> 12.4 GHz to 18.0 GHz	0.109 dB			
	> 18.0 GHz to 26.5 GHz	0.118 dB			
Temperature effect 49	DC to 4.2 GHz	< 0.004 dB/K			
	> 4.2 GHz to 8.0 GHz	< 0.005 dB/K			
	> 8.0 GHz to 12.4 GHz	< 0.005 dB/K			
	> 12.4 GHz to 18.0 GHz	< 0.006 dB/K			
	> 18.0 GHz to 26.5 GHz	< 0.009 dB/K			
Linearity 50	for power levels < 100 mW (20 dBm)	< 0.020 dB			
Power coefficient 51		< (0.02 + 0.002 f/GHz) dB	/W		
Load interference error 52	DC to 2.0 GHz	< 0.061 (0.003) dB			
From RF signal output	> 2.0 GHz to 12.4 GHz	< 0.050 (0.012) dB	values in () after		
	> 12.4 GHz to 18.0 GHz	< 0.043 (0.016) dB	load interference		
	> 18.0 GHz to 26.5 GHz	< 0.043 (0.022) dB	correction		
Interface to host	power supply	+5 V/0.1 A (USB low-power	er device)		
	remote control	as a USB device (function) in full-speed mode,		
		compatible with USB 1.0/1	1.1/2.0 specifications		
	trigger input	differential (0 V/+3.3 V)			
	connector type	ODU Mini-Snap® L series,	1		
		six-pole cylindrical straight plug			
	permissible cable length	≤ 10 m (see also tables on page 57)			
Dimensions	W×H×L	48 mm × 50 mm × 250 mr	n ,		
		(1.89 in × 1.97 in × 9.84 in	1)		
	length including connecting cable	approx. 1.75 m (68.89 in)			
Weight	<u> </u>	< 0.7 kg (1.54 lb)			

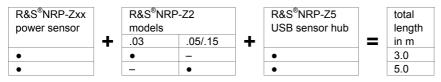
Block diagram of the R&S®NRP-Z27/-Z37 power sensor modules.

Accessories for sensors


R&S®NRP-Z2 extension cables

Application		for extending the connection between an R&S®NRP-Zxx power sensor and the R&S®NRP2 base unit, another Rohde & Schwarz measuring instrument, an R&S®NRP-Z3/-Z4 USB adapter cable or an R&S®NRP-Z5 USB sensor hub			
Connectors	type	ODU Mini-Snap [®] L series, size 1, six-pole			
		receptacle			
	sensor side				
	model .03/.05/.10	with in-line receptacle			
	model .15	with bulkhead receptacle for panel mounting			
		< 5 mm wall thickness			
	host side	straight plug			
Length	model .03	1.5 m			
	model .05/.15	3.5 m			
	model .10	8.5 m			
Permissible total length	including power sensor and R&S®NRP2 base unit or R&S®NRP-Z3/-Z4 USB adapter cable or R&S®NRP-Z5 USB sensor hub, if applicable	see tables below			

Supported combinations with R&S®NRP2 base unit or other Rohde & Schwarz measuring instruments with ODU Mini-Snap® receptacle (e.g. R&S®FSMR, R&S®SMA200A, R&S®SMF100A)


R&S®NRP-Zxx]	R&S®NRP	-Z2 models]	total	(shaded combination only
power sensor		.03	.05/.15	.10		length	supported by R&S®NRP2
	_				_	in m	base unit; not permissible
•	T	•	_	_	_	3.0	for R&S [®] NRP-Z81/-Z85/-Z86
•		_	•	_		5.0	power sensors)
•		_	_	•		10.0	

Supported combinations with R&S®NRP-Z3/-Z4 USB adapter cables

(shaded combinations not permissible for R&S®NRP-Z81/-Z85/-Z86 power sensors)

Supported combinations with R&S®NRP-Z5 USB sensor hub (cable between sensor and hub)

Supported combinations with R&S®NRP-Z5 USB sensor hub (cable between hub and host)

R&S [®] NRP-Z5 USB sensor hub		R&S [®] NRP models	-Z2	R&S [®] NF	RP-Z4 mod	dels		standard USB cable (max. length: 5 m)		total length
		.03	.05/.15	.06	.04	.11	.02			in m
•		•	_		_		_	_		3.0
•		_	•		_		_	_	_	5.0
•	T	_	_	•	_	_	_	_	_	0.1
•		_	_	_	•	_	_	_		0.5
•		_	_	_	_	•	_	_		1.0
•		_	_	_	_	_	•	_		2.0
•		_	_	_	_	_	_	•		5.0

R&S®NRP-Z3 active USB adapter cable

Application		for connecting an R&S®NRP-Zxx power sensor to a USB host (PC or Rohde & Schwarz measuring instrument with type A receptacle)				
Trigger input	maximum voltage	±15 V				
	logic level					
	low	< 0.8 V				
	high	> 2.0 V				
	input impedance	approx. 5 kΩ				
Connectors	sensor	ODU Mini-Snap® L series, size 1, six-pole				
		receptacle				
	USB host	USB type A plug				
Plug-in power supply	voltage/frequency	100 V to 240 V/50 Hz to 60 Hz				
	tolerance	±10 % for voltage, ±3 Hz for frequency				
	current consumption	25 mA (typ.) with sensor connected				
	connection	via adapter to all common AC supplies (Europe,				
		UK, USA, Australia)				
Dimensions (W × H × L)	USB adapter	48 mm × 45 mm × 140 mm				
		(1.89 in × 1.77 in × 5.51 in)				
	length including connecting cable	approx. 2 m (78.74 in)				
	plug-in power supply	52 mm × 73 mm × 110 mm				
		(2.05 in × 2.87 in × 4.33 in)				
	length of line to USB adapter	approx. 2 m (78.74 in)				
Weight	USB adapter	< 0.2 kg (0.44 lb)				
	plug-in power supply	< 0.3 kg (0.66 lb)				

R&S®NRP-Z4 passive USB adapter cable

Application		for connecting an R&S®NRP-Zxx power sensor
		to a USB host (PC or Rohde & Schwarz
		measuring instrument with type A receptacle)
Connectors	sensor side	ODU Mini-Snap® L series, size 1, six-pole
		receptacle
	models .02/.04/.06	with in-line receptacle
	model .11	with bulkhead receptacle for panel mounting
		< 5 mm wall thickness
	host side	USB type A plug
Dimensions (length)	model .02	approx. 2 m (78.74 in)
	model .04	approx. 0.5 m (19.69 in)
	model .06	approx. 0.15 m (5.91 in)
	model .11	approx. 1 m (39.37 in)

R&S®NRP-Z5 USB sensor hub

Application Trigger input	maximum voltage logic level	for connecting up to four R&S®NRP-Zxx power sensors to • a USB host (PC or Rohde & Schwarz measuring instrument with type A receptacle) • a Rohde & Schwarz measuring instrument (other than the R&S®NRP2) with circular sensor connector (ODU Mini-Snap® L series, size 1, six-pole receptacle)
	low high input impedance	< 0.8 V > 2.0 V approx. 10 kΩ 25 pg (without D 8 S®NDD 72 extension cable)
Trigger output	minimum pulse width high-level output voltage low-level output voltage	35 ns (without R&S $^{\otimes}$ NRP-Z2 extension cable) < 5.3 V (no load), > 2.0 V (50 Ω) < 0.4 V at 5 mA sink current
Power supply	voltage/power source	12 V to 24 V (DC)/24 W AC adapter supplied with the equipment or equivalent DC voltage source no supply from extra-low voltage supply systems or via secondary cables > 30 m (98.43 ft)
Connectors	sensors A to D USB host	ODU Mini-Snap® L series, size 1, six-pole receptacle USB type B receptacle (certified USB 2.0 high-
	for Rohde & Schwarz instrument	speed cable supplied with the equipment) ODU Mini-Snap® L series, size 1, six-pole plug
	trigger input, trigger output	BNC receptacle
	power supply	receptacle receptacle for DC barrel connector, Ø 5.5 mm × Ø 2.1 mm × 9.5 mm; inner conductor is positive pole
Dimensions (W × H × L)	sensor hub	140.6 mm × 36.6 mm × 138 mm (5.54 in × 1.44 in × 5.43 in)
Weight	excluding accessories	< 0.55 kg (1.21 lb)
AC adapter	input voltage/frequency tolerance input connector	100 V to 240 V/50 Hz to 60 Hz ±10 % for voltage, ±3 Hz for frequency C14 receptacle in line with IEC 60320
	output voltage/power length of secondary cable dimensions (W × H × L)	12 V (DC)/36 W approx. 0.72 m (28.35 in) 120 mm × 52 mm × 31 mm
	weight	(4.72 in × 2.05 in × 1.22 in) < 0.3 kg (0.66 lb)

R&S®NRP2 base unit

Application		multichannel power meter
Sensors		R&S®NRP-Zxx series
Measurement channels	R&S [®] NRP2	1
	R&S [®] NRP2 + R&S [®] NRP-B2	2
	R&S [®] NRP2 + R&S [®] NRP-B2 + R&S [®] NRP-B5	4
Measurement functionality	single-channel	see sensor specifications, plus: relative measurement referenced to result or user-selectable reference value, storage of minima and maxima (max, min, max – min), limi monitoring
	display	
	absolute	in W, dBm and dBμV
	relative	in dB, as change in percent (Δ %) or as quotient
	multichannel	simultaneous measurement in up to 4 channels; individual results, ratios, relative ratios ⁵³ or difference of results of 2 channels can be displayed
	display	
	ratio	in dB, as change in percent (Δ %), as quotient of as one of the following impedance matching parameters: SWR, return loss, reflection coefficient
	relative ratio 53	in dB, as change in percent (Δ %) or as quotient
	difference	difference of powers in W, expressed in W or dBm
Display	type	color TFT graphics screen ⁵⁴ , ½ VGA (320 × 240 pixel), full size, with adjustable backlighting
	result representation	
	numeric measurements	up to 4 results can simultaneously be displayed in separate windows (full size, ½ size or ¼ size, depending on number of results)
	format	digital, digital and analog
	resolution	
	digital values	selectable in 4 steps: 0.001 dB/0.01 %/4½ digits (W, quotient) 0.01 dB/0.1 %/3½ digits (W, quotient) 0.1 dB/1.0 %/2½ digits (W, quotient) 1 dB/1.0 %/2½ digits (W, quotient)
	analog display	depending on user-definable scale end values
	additional information	min, max, max – min, mean, stdev and number of recent measurements, frequency
	measurement of power versus time	one or two ⁵⁴ traces can be displayed in one full-size window: absolute power, difference in o ratio of the power of two channels
	additional information	marker, gate and timeslot measurements within view area
	power envelope statistics	CCDF, CDF and PDF versus absolute power in dBm or versus relative power referenced to the average power level
	additional information	marker measurements

R&S®NRP2 base unit (continued)

Manual operation		Windows-oriented menus with hotkeys for the				
Remote control	systems	most important functions IEC 60625.1 (IEEE488.1) and				
Remote control	Systems	IEC 60625.2 (IEEE488.2)				
	command set	SCPI-1999.0				
	IEC/IEEE bus					
	interface functions	SH1, AH1, L3, LE3, T5, TE5, SR1, PP1, PP2,				
		RL1, DC1, E2, DT1, C0				
	connector	24-pin Amphenol (female)				
	USB TMC					
	connector	USB type B receptacle				
	Ethernet LAN 10/100BaseT					
	connector	RJ-45 modular socket				
Firmware download		from the R&S®NRP toolkit via the USB type B				
		receptacle using a Windows-compatible progra				
nputs/outputs (front panel)	A, B (R&S [®] NRP-B2 option)	sensor inputs for R&S®NRP-Zxx power sensors				
	connector	ODU Mini-Snap® L series, size 1, six-pole				
	Connector	receptacle				
	POWER REF (R&S®NRP-B7 option)	1 mW/50 MHz, CW and pulsed (10 kHz) signal				
	, , ,	N (female)				
nnuto/outnuto (roor nonel)	connector	iv (letitale)				
nputs/outputs (rear panel)	OUT1/TRIG OUT modes	TRIG OUT: Trigger Output 54				
	modes	OUT1: Ingger Output OUT1: Analog Output, Pass/Fail, OFF				
	Trigger Output	output for trigger signal from/to sensors				
	high-level output voltage low-level output voltage	< 5.3 V (no load), > 2.0 V (50 Ω) < 0.4 V at 5 mA sink current				
	1 0	< 0.4 V at 5 mA sink current 50 Ω				
	output impedance					
	Analog Output	recorder output; user-definable linear relation to measurement result of display windows 1 to 4				
	Pass/Fail	limit indicator with two user-selectable output				
	Fa55/Fall	voltages for identifying the pass and fail states				
		the case of limit monitoring				
	OFF	0 V				
	voltage range OUT1	0 V to +3.3 V				
	setting accuracy	±1 % of voltage reading + (0/+8 mV)				
	resolution	12 bit (monotone)				
	output impedance OUT1	12 bit (monotone) 1 kΩ				
	connector	BNC (female)				
	TRIG IN/OUT 2	bivo (ieiliale)				
	modes	Analog Output and Trigger Input				
	Analog Output	recorder output; user-definable linear relation to				
	Analog Output	measurement result of display windows 1 to 4				
	electrical characteristics	see OUT1				
	Trigger Input	input for trigger signal to sensors				
	maximum voltage	-7 V/+10 V				
	logic level	-1 V/110 V				
	low	< 0.8 V				
	high	> 2.0 V				
	impedance	10 kΩ//100 pF				
	connector	BNC (female)				
	sensor input C (A); D (B)	sensor inputs for R&S®NRP-Zxx power sensors				
	(R&S®NRP-B5/-B6 option)	Consol inpute for two 14th -ZAA power sensors				
	connector	ODU Mini-Snap® L series, size 1, six-pole				
	3371133131	receptacle				
Power supply	voltage, frequency	220 V to 240 V, 50 Hz to 60 Hz				
		100 V to 120 V, 50 Hz to 60 Hz and 400 Hz				
	tolerance	±10 % for voltage and frequency				
	apparent power	< 80 VA (including current consumption of up to				
	apparent perior	< 80 VA (including current consumption of up to four R&S®NRP-Zxx power sensors)				
Dimensions	W×H×D	274 mm × 112 mm × 267 mm				
		(10.79 in × 4.41 in × 10.51 in)				
Weight		< 2.5 kg (5.51 lb)				

Options for the R&S®NRP2 base unit

R&S®NRP-B2 second sensor input

Second sensor input (B)	application	for R&S®NRP-Zxx power sensors (available as
		standard on front panel)
	connector	ODU Mini-Snap® L series, size 1, six-pole
		receptacle

R&S®NRP-B5 third and fourth sensor input

Third (C) and fourth (D) sensor	application	for R&S®NRP-Zxx power sensors (only on rear				
input	panel)					
	connector	ODU Mini-Snap [®] L series, size 1, six-pole				
		receptacle				

R&S®NRP-B6 rear panel sensor inputs

Rear panel assembly	application	for sensor inputs A and B (only possible if the
		R&S®NRP-B5 option is not installed)

R&S®NRP-B7 sensor check source

Sensor check source	application	as a power reference for testing sensors		
	frequency	50 MHz		
	power	1.00 mW		
	uncertainty			
	+20 °C to +25 °C	0.85 %		
	0 °C to +50 °C	1.00 %		
	pulse repetition frequency	10 kHz ± 30 ppm		
	duty cycle 50 % ± 200 ppm			
	on/off ratio	60 dB (typ.)		
	rise/fall time	< 50 ns		
	SWR	< 1.05		
	RF connector	N (female)		

General data

Temperature loading 55	operating and permissible temperature	in line with IEC 60068				
	range (in [] if different)					
	R&S [®] NRP2 base unit with options,	0 °C to +50 °C				
	R&S®NRP-Z5 USB sensor hub,					
	R&S®NRP-Z3/-Z4 USB adapter					
	cables					
	R&S®NRP-Zxx power sensors,	0 °C [-10 °C] to +50 °C [+55 °C]				
	R&S [®] NRP-Z2 extension cables					
	storage temperature range					
	R&S®NRP2 base unit with options,	-40 °C to +70 °C				
	R&S®NRP-Z5 USB sensor hub					
	R&S [®] NRP-Zxx power sensors,	-40 °C to +70 °C				
	R&S®NRP-Z2 extension cables and					
	R&S [®] NRP-Z3/-Z4 USB adapter					
	cables					
Climatic resistance		in line with EN 60068				
	damp heat	+25 °C/+40 °C cyclic at 95 % relative humidity				
		with restrictions: noncondensing				
Mechanical resistance	vibration					
	sinusoidal	5 Hz to 55 Hz, max. 2 g				
		55 Hz to 150 Hz, 0.5 g constant,				
		in line with EN 60068				
	random	10 Hz to 500 Hz, 1.9 g (RMS),				
		in line with EN 60068				
	shock	40 g shock spectrum, in line with EN 60068				
	air pressure					
	operation	795 hPa (2000 m) to 1060 hPa				
	transport	566 hPa (4500 m) to 1060 hPa				
Electromagnetic compatibility		in line with EN 61326, EN 55011				
Safety		in line with EN 61010-1; IEC 61010-1;				
		CAN/CSA-C22.2 No. 61010-1-04;				
		UL Std. No. 61010-1				
Calibration interval	for R&S®NRP-Z8x power sensors	1 year				
	for all other R&S®NRP-Zxx power					
	sensors and R&S®NRP-B7 sensor					
	check source	2 years				

Appendix

Reading the uncertainty of diode power sensors for relative power measurements

The example shows a level step of approx. 14 dB (-4 dBm \rightarrow +10 dBm) at 1.9 GHz and an ambient temperature of +28 °C for an R&S®NRP-Z21 power sensor.

Power Level 2: +10 dBm

Ordering information

Designation	Туре	Order No.
Base unit		
Power Meter	R&S [®] NRP2	1144.1374.02
Options		
Second Sensor Input (B)	R&S [®] NRP-B2	1146.8801.02
3rd and 4th Sensor Inputs (C, D) 56	R&S®NRP-B5	1146.9608.02
Rear Panel Sensor Inputs A and B 57	R&S [®] NRP-B6	1146.9908.02
Sensor Check Source	R&S [®] NRP-B7	1144.1000.02
Universal Power Sensors		
200 pW to 200 mW, 10 MHz to 8 GHz	R&S [®] NRP-Z11	1138.3004.02/.04 ⁵⁸
200 pW to 200 mW, 10 MHz to 18 GHz	R&S [®] NRP-Z21	1137.6000.02
200 pW to 200 mW, 10 MHz to 33 GHz	R&S [®] NRP-Z31	1169.2400.02/.04 ⁵⁸
200 pW to 100 mW, 50 MHz to 40 GHz	R&S [®] NRP-Z41	1171.8801.02
200 pW to 100 mW, 50 MHz to 50 GHz	R&S [®] NRP-Z61	1171.7505.02
1 nW to 100 mW, 10 MHz to 8 GHz	R&S [®] NRP-Z211	1417.0409.02
1 nW to 100 mW, 10 MHz to 18 GHz	R&S [®] NRP-Z221	1417.0309.02
2 nW to 2 W, 10 MHz to 18 GHz	R&S [®] NRP-Z22	1137.7506.02
20 nW to 15 W, 10 MHz to 18 GHz	R&S [®] NRP-Z23	1137.8002.02
60 nW to 30 W, 10 MHz to 18 GHz	R&S [®] NRP-Z24	1137.8502.02
Wideband Power Sensors		<u> </u>
1 nW to 100 mW, 50 MHz to 18 GHz	R&S [®] NRP-Z81	1137.9009.02
1 nW to 100 mW, 50 MHz to 40 GHz (2.92 mm)	R&S®NRP-Z85	1411.7501.02
1 nW to 100 mW, 50 MHz to 40 GHz (2.40 mm)	R&S®NRP-Z86	1417.0109.40
1 nW to 100 mW, 50 MHz to 44 GHz (2.40 mm)	R&S®NRP-Z86	1417.0109.44
Thermal Power Sensors	1100 1111 200	1117.0100.11
300 nW to 100 mW, DC to 18 GHz	R&S®NRP-Z51	1138.0005.03
300 nW to 100 mW, DC to 33 GHz	R&S®NRP-Z52	1138.0505.02
300 nW to 100 mW, DC to 40 GHz	R&S®NRP-Z55	1138.2008.03
300 nW to 100 mW, DC to 44 GHz	R&S®NRP-Z55	1138.2008.04
300 nW to 100 mW, DC to 50 GHz	R&S®NRP-Z56	1171.8201.02
	R&S®NRP-Z57	1171.8401.02
300 nW to 100 mW, DC to 67 GHz	R&S®NRP-Z58	
300 nW to 100 mW, DC to 110 GHz	R&S NRP-258	1173.7031.02
Average Power Sensors	D00®NDD 704	4400 0004 00404 58
200 pW to 200 mW, 9 kHz to 6 GHz	R&S®NRP-Z91	1168.8004.02/04 58
2 nW to 2 W, 9 kHz to 6 GHz	R&S [®] NRP-Z92	1171.7005.02/42 ⁵⁹
Level Control Sensors	7.0 0 Rt 17.7 70.0	44=0.0=0.00
200 pW to 100 mW, 9 kHz to 6 GHz	R&S®NRP-Z98	1170.8508.02
200 pW to 100 mW, 10 MHz to 18 GHz	R&S [®] NRP-Z28	1170.8008.02
Power Sensor Modules		
4 μW to 400 mW, DC to 18 GHz	R&S [®] NRP-Z27	1169.4102.02
4 μW to 400 mW, DC to 26.5 GHz	R&S [®] NRP-Z37	1169.3206.02
Recommended extras		
R&S®NRPV Virtual Power Meter (PC application),	R&S®NRPZ-K1	1418.9800.03
activation for one R&S®NRP-Zxx power sensor		
Sensor Extension Cable to 3 m	R&S [®] NRP-Z2	1146.6750.03
Sensor Extension Cable to 5 m	R&S [®] NRP-Z2	1146.6750.05
Sensor Extension Cable to 10 m	R&S [®] NRP-Z2	1146.6750.10
Sensor Extension Cable to 5 m	R&S [®] NRP-Z2	1146.6750.15
(with bulkhead receptacle for panel mounting)		
USB Adapter Cable (active)	R&S [®] NRP-Z3	1146.7005.02
USB Adapter Cable (passive, length: 2.0 m)	R&S [®] NRP-Z4	1146.8001.02
USB Adapter Cable (passive, length: 0.5 m)	R&S®NRP-Z4	1146.8001.04
USB Adapter Cable (passive, length: 0.15 m)	R&S®NRP-Z4	1146.8001.06
USB Adapter Cable (passive, length: 1.0 m, with bulkhead	R&S®NRP-Z4	1146.8001.11
receptacle for panel mounting)		
USB Sensor Hub	R&S [®] NRP-Z5	1146.7740.02
19" Rack Adapter	R&S®ZZA-T26	1109.4387.00
(for one R&S®NRP2 power meter and one empty casing)	133 227-120	1109.4007.00
19" Rack Adapter	R&S [®] ZZA-T27	1109.4393.00
13 Daus Audulei	NOO ZZM-1Z/	1 109 4393 00

Service options		
Extended Warranty, one year	R&S [®] WE1	Please contact your local
Extended Warranty, two years	R&S [®] WE2	Rohde & Schwarz sales office.
Extended Warranty, three years	R&S [®] WE3	
Extended Warranty, four years	R&S [®] WE4	
Extended Warranty with Calibration Coverage, one year	R&S [®] CW1	
Extended Warranty with Calibration Coverage, two years	R&S [®] CW2	
Extended Warranty with Calibration Coverage, three years	R&S [®] CW3	
Extended Warranty with Calibration Coverage, four years	R&S [®] CW4	

Extended warranty with a term of one to four years (WE1 to WE4)

Repairs carried out during the contract term are free of charge ⁶⁰. Necessary calibration and adjustments carried out during repairs are also covered. Simply contact the forwarding agent we name; your product will be picked up free of charge and returned to you in top condition a couple of days later.

Extended warranty with calibration (CW1 to CW4)

Enhance your extended warranty by adding calibration coverage at a package price. This package ensures that your Rohde & Schwarz product is regularly calibrated, inspected and maintained during the term of the contract. It includes all repairs ⁶⁰ and calibration at the recommended intervals as well as any calibration carried out during repairs or option upgrades.

Footnotes

- Specifications apply to timeslots/gates with a duration of 12.5 % referenced to the signal period (duty cycle 1:8). For other waveforms, the following equation applies: lower measurement limit = lower measurement limit for continuous average mode / √(duty cycle).
- ² With a resolution of 256 pixels.
- 3 Specifications apply to the default transition setting of 0 dB. The transition regions can be shifted by as much as -20 dB using an adequate offset.
- ⁴ To prevent aliasing in the case of signals with discrete modulation frequencies between 100 kHz and 1 MHz.
- ⁵ Time span prior to triggering, where the trigger signal must be entirely below the threshold level in the case of a positive slope and vice versa in the case of a negative slope.
- Specifications expressed as an expanded uncertainty with a confidence level of 95 % (two standard deviations). For calculating zero offsets at higher confidence levels, use the properties of the normal distribution (e.g. 99.7 % confidence level for three standard deviations).
- Specifications apply to zeroing with a duration of 4 s. Zeroing for more than 4 s lowers uncertainty correspondingly (half values for 16 s).
- ⁸ Within one hour after zeroing, permissible temperature change ±1 °C, following a two-hour warm-up of the power sensor.
- Two standard deviations at 10.24 s integration time in continuous average mode, with aperture time set to default value. The integration time is defined as the total time used for signal acquisition, i.e. the product of twice the aperture time and the averaging number. Multiplying the noise specifications by √(10.24 s/integration time) yields the noise contribution at other integration times. Using a von Hann window function increases noise by a factor of 1.22.
- Expanded uncertainty (k = 2) for absolute power measurements on CW signals with automatic path selection and the default transition setting of 0 dB. Specifications include calibration uncertainty, linearity and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –35 dBm for the R&S®NRP-Z11/-Z21/-Z31/-Z41/-Z61/-Z91, –30 dBm for the R&S®NRP-Z211/-Z221, –25 dBm for the R&S®NRP-Z22/-Z92 and –15 dBm for the R&S®NRP-Z24. The contribution of measurement noise depends on power and integration time and can be neglected below 0.01 dB.

Example: The uncertainty of a power measurement at 3.2 nW (–55 dBm) and 1.9 GHz is to be determined for an R&S®NRP-Z11. The ambient temperature is +29 °C and the averaging number is set to 32 in the continuous average mode with an aperture time of 20 ms.

Since path 1 is used for the measurement, the typical absolute uncertainty due to zero offset is 64 pW (typical) after external zeroing, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{3.2 \, nW + 64 \, pW}{3.2 \, nW} = 0.086 \, dB$$

Using the formula in footnote 9, the absolute noise contribution of path 1 is typically 40 pW × $\sqrt{(10.24 \text{ s}/(32 \times 2 \times 0.02 \text{ s}))}$ = 113 pW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{3.2 \text{ nW} + 113 \text{ pW}}{3.2 \text{ nW}} = 0.151 \text{ dB}$$

Combined with the uncertainty of 0.081 dB for absolute power measurements under the given conditions, the total expanded uncertainty is

$$\sqrt{0.086^2 + 0.151^2 + 0.081^2} dB = 0.192 dB$$
.

The contribution of zero drift has been neglected in this case. It must be treated like zero offset if it is relevant for total uncertainty.

Expanded uncertainty (k = 2) for relative power measurements on CW signals of the same frequency with automatic path selection and a default transition setting of 0 dB. For reading the measurement uncertainty diagrams of universal, average and level control sensors, see the Appendix.

Specifications include calibration uncertainty (only if different paths are affected), linearity and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –35 dBm for the R&S®NRP-Z11/-Z21/-Z31/-Z41/-Z61/-Z91, –30 dBm for the R&S®NRP-Z211/-Z221, –25 dBm for the R&S®NRP-Z22/-Z92 and –15 dBm for the R&S®NRP-Z24. The contribution of measurement noise depends on power and integration time and can be neglected below 0.01 dB.

Example: The uncertainty of a power step from 1 mW (0 dBm) to 10 nW (–50 dBm) at 5.4 GHz is to be determined for an R&S[®]NRP-Z11. The ambient temperature is +20 °C and the averaging number is set to 16 for both measurements in the continuous average mode with an aperture time of 20 ms. For the calculation of total uncertainty, the relative contribution of noise, zero offset and zero drift must be taken into account for both measurements . In this example, all contributions at 0 dBm and the effect of zero drift have been neglected.

Since path 1 is used for the -50 dBm measurement, the typical absolute uncertainty due to zero offset is 64 pW after external zeroing, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{10 \text{ nW} + 64 \text{ pW}}{10 \text{ nW}} = 0.028 \text{ dB}$$

Using the formula in footnote 9, the absolute noise contribution of path 1 is typically 40 pW × $\sqrt{(10.24 \text{ s}/(16 \times 2 \times 0.02 \text{ s}))}$ = 160 pW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{10 \text{ nW} + 160 \text{ pW}}{10 \text{ nW}} = 0.069 \text{ dB}$$

Combined with the uncertainty of 0.054 dB for relative power measurements under the given conditions, the total expanded uncertainty is

$$\sqrt{0.028^2 + 0.069^2 + 0.054^2} dB = 0.092 dB$$

- Specifications are based on the assumption that the measurements follow each other so fast (at intervals of no more than 10 s) that the temperature of the power attenuator does not change significantly. In the case of the R&S®NRP-Z22/-Z92, the average power must not exceed 1 W to be compliant with accuracy specifications for relative power measurements.
- ¹³ Gamma correction activated.
- ¹⁴ Preceding sensor section (nominal value).
- 15 Preferably used with determined modulation when the aperture time cannot be matched to the modulation period. Compared to a uniform window, measurement noise is about 22 % higher.
- For measuring the power of periodic bursts based on an average power measurement.
- 17 To increase measurement speed, the power sensor can be operated in buffered mode. In this mode, measurement results are stored in a buffer of user-definable size and then output as a block of data when the buffer is full. To enhance measurement speed even further, the sensor can be set to record the entire series of measurements when triggered by a single event. In this case, the power sensor automatically starts a new measurement as soon as it has completed the previous one.
- 18 This parameter enables power measurements on modulated bursts. The parameter must be longer in duration than modulation-induced power drops within the burst.
- ¹⁹ To exclude unwanted portions of the signal from the measurement result.
- ²⁰ If embedding is used in conjunction with the R&S®NRP-Z22/-Z23/-Z24/-Z92, the data of the RF power attenuator preceding the sensor section is taken into account (automatically upon power-up of the sensor).
- Valid for Repeat mode, extending from the beginning to the end of all transfers via the USB interface of the power sensor. Measurement times under remote control of the R&S®NRP2 base unit via IEC/IEEE bus are approximately 2.5 ms longer, extending from the start of the measurement up to when the measurement result has been supplied to the output buffer of the R&S®NRP2.
- ²² Integration time is defined as the total time used for signal acquisition, i.e. taking into account the chosen aperture/acquisition time and the averaging number
- Magnitude of measurement error referenced to an ideal thermal power sensor that measures the sum power of carrier and harmonics. For the R&S®NRP-Z11/-Z31/-Z41/-Z61/-Z91/-Z98, specifications apply to automatic path selection and power levels up to +20 dBm or, within a subrange, to 12.6 μW (-19 dBm) for path 1, 1.26 mW (+1 dBm) for path 2 and 100 mW (+20 dBm) for path 3. For the R&S®NRP-Z211/-Z221, specifications apply to automatic path selection and power levels up to +16 dBm or, within a subrange, to 0.1 mW (-10 dBm) for path 1 and 40 mW (+16 dBm) for path 2. Use the nominal RF attenuation of the R&S®NRP-Z22/-Z23/-Z24/-Z92 to calculate the equivalent power at the input of the RF power attenuator. Above the mentioned power limit, specifications must be raised by a factor of 1.25 per 1 dB rise in power level. Within a subrange, measurement errors are proportional to the measured power in W.
- Measurement error referenced to a CW signal of equal power and frequency. For the R&S®NRP-Z11/-Z21/-Z31/-Z41/-Z61/-Z91/-Z98, specifications apply to automatic path selection and power levels up to +20 dBm or, within a subrange, to 12.6 μW (–19 dBm) for path 1, 1.26 mW (+1 dBm) for path 2 and 100 mW (+20 dBm) for path 3. For the R&S®NRP-Z211/-Z221, specifications apply to automatic path selection and power levels up to +16 dBm or, within a subrange, to 0.1 mW (–10 dBm) for path 1 and 39.8 mW (+16 dBm) for path 2 Use the nominal RF attenuation of the R&S®NRP-Z22/-Z33/
 - -Z24/-Z92 to calculate the equivalent power at the input of the RF power attenuator. Above the mentioned power limit, specifications must be raised by a factor of 1.25 per 1 dB rise in power level. Within a subrange, measurement errors are proportional to the measured power in W.
- ²⁵ Applies to the R&S[®]NRP-Z11/-Z21/-Z31/-Z41/-Z61/-Z211/-Z91 and the sensor section of the R&S[®]NRP-Z22/-Z23/-Z24/-Z92, referenced to 0 dRm
- ²⁶ Expanded uncertainty (k = 2) for absolute power measurements on CW signals at the calibration level within a temperature range from +20 °C to +25 °C and at the calibration frequencies (10 MHz, 15 MHz, 20 MHz, 30 MHz, 100 MHz; in steps of 250 MHz from 250 MHz to the upper frequency limit). Specifications include zero offset and measurement noise (up to a 2σ value of 0.004 dB). The calibration level is –20 dBm for path 1 and 0 dBm for paths 2 and 3 with the R&S®NRP-Z11/-Z21/-Z31/-Z31/-Z91/-Z91/-Z98 sensors and the sensor section of the R&S®NRP-Z22/-Z23/-Z24/-Z92 sensors. The calibration level for the R&S®NRP-Z211/-Z221 is –10 dBm for paths 1 and 2.
- ²⁷ Specifications include sensor section and RF power attenuator.
- ²⁸ With full video bandwidth. Reduce the specified minimum levels according to the reduction of sampling noise at lower bandwidths.
- ²⁹ Specifications are valid from +15 °C to +50 °C ambient temperature. Below +15 °C, video bandwidth and single-shot bandwidth continuously decrease down to 20 MHz (typical) at 0 °C. Accordingly, the sensor rise time increases up to 50 ns for signals below 500 MHz and up to 20 ns for higher frequencies (typical at 0 °C).
- Specifications are valid at +23 °C ambient temperature for power levels ≤ -20 dBm and frequencies ≥ 500 MHz. For measurements at other temperatures levels and/or frequencies, use the multipliers from table A.
- ³¹ Measured over a one-minute interval, at constant temperature, two standard deviations.
- 32 512k averages taken with the aperture time set to default (10 μs). The measurement noise with other averaging numbers can be calculated by applying the multipliers indicated below:

Averaging number	512k	128k	32k	8k	2k	512	128	32	8
Integration time	10.49 s	2.62 s	655.36 ms	163.84 ms	40.96 ms	10.24 ms	2.56 ms	0.64 ms	0.16 ms
Noise multiplier	1	2	4	8	16	32	64	128	256

Using a von Hann window function further increases noise by a factor of 1.22. Integration time is defined as the total time used for signal acquisition, i.e. the product of twice the aperture time and the averaging number.

The measurement noise is always minimal for the default aperture time. Increasing the aperture time above this value is only useful for suppressing modulation-induced fluctuations of the measurement result, e.g. by matching the aperture time to the modulation period.

Expanded uncertainty (k = 2) for absolute power measurements on CW signals. Specifications include calibration uncertainty, linearity, influence of sensor-induced harmonics reflected on the DUT, and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset and zero drift can be neglected for power levels above –35 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.02 dB.

Example: The power to be measured is 40 nW (-44 dBm) at 12 GHz in the continuous average mode; ambient temperature +35 °C; averaging number set to 32k with an aperture time of 10 µs (1 s integration time).

The typical absolute uncertainty due to zero offset is 220 pW at +23 °C. From table A, a multiplier of 1.4 can be taken to read a typical zero offset of 308 pW at +35 °C. The corresponding relative measurement uncertainty can be calculated as follows:

$$10 \times lg \frac{40 \, nW + 308 \, pW}{40 \, nW} = 0.033 \, dB$$

Using the noise multiplier (4) from footnote 32 and the multiplier (1.4) from table A, the absolute noise contribution is typically 110 pW × 4 × 1.4 = 616 pW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{40 \, nW + 616 \, pW}{40 \, nW} = 0.066 \, dB$$

Combined with the value of 0.18 dB specified for the uncertainty of absolute power measurements at 12 GHz, the total expanded uncertainty is

$$\sqrt{0.18^2 + 0.033^2 + 0.066^2} dB = 0.195 dB$$

The contribution of zero drift has been neglected in this case. It must be treated like zero offset if it is relevant for total uncertainty.

Expanded uncertainty (k = 2) for relative power measurements on CW signals of the same frequency, carried out using a matched source. For reading the measurement uncertainty, see the Appendix. For small power ratios up to 5 dB, expanded uncertainty will typically not exceed 0.06 dB (0.08 dB) at +23°C (from 0°C to +50°C).

Specifications include linearity of the sensor, influence of sensor-induced harmonics that may be re-reflected at the source (DUT), and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset and zero drift can be neglected for power levels above –35 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below a two-sigma value of 0.02 dB. A source (DUT) SWR of 3 has been assumed for signal frequency harmonics emanating from the sensor.

Example: The uncertainty of a power step from 1 mW (0 dBm) to 1 μ W (-30 dBm) at 31 GHz is to be determined with an R&S[®]NRP-Z85. The ambient temperature is +21 °C and the averaging number is set to 128 for both measurements. Measurements are carried out in the continuous average mode with a default aperture time of 10 μ s.

For the calculation of total uncertainty, the relative contribution of zero offset and zero drift can be neglected in this case since both power levels are higher than -30 dBm. Noise must be taken into account for measurements at 1 μ W. Using the noise multiplier (64) from footnote 32 and the multiplier (1.0) from table A, the absolute noise contribution is typically 110 pW × 64 × 1.0 = 7 nW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{1~\mu W + 0.007~nW}{1~\mu W} = 0.030~dB$$

Combined with the uncertainty of 0.126 dB for relative power measurements with a matched source (see table), total expanded uncertainty is

$$\sqrt{0.03^2 + 0.126^2} dB = 0.130 dB$$

Mismatch of the source (DUT) at the signal frequency can further impair linearity due to a change of the input reflection coefficient of the power sensor as a function of applied power (for specifications of reflection coefficient changes, see page 32). Limits of the induced linearity error can be approximated by

$$\pm$$
 8.7 dB \cdot r_{DUT} \cdot Δr_{SEN}

where r_{DUT} denotes the magnitude of the reflection coefficient of the source (DUT) and Δr_{SEN} denotes the change of the input reflection coefficient of the power sensor

- Magnitude of measurement error referenced to an ideal thermal power sensor that measures the sum power of carrier and harmonics. For power levels below –10 dBm, the specifications for 2 × f₀ (3 × f₀) can be lowered by a factor of √10 (10) per 10 dB below –10 dBm. Example: At 12 GHz/–30 dBm, the influence of the second harmonic, suppressed by 20 dBc, will cause an error of max. 0.25 dB ÷ 10 = 0.025 dB. Standard uncertainties can be assumed to be half the values.
- ³⁶ Magnitude of the change vector in the complex plane.
- 37 Expanded uncertainty (k = 2) for absolute power measurements on CW signals at the calibration level (-10 dBm) within a temperature range from +20 °C to +25 °C and at the calibration frequencies (50/55/60/68/80/100/200/300/400/499.99/500/600/720/850/1000/1500 MHz; R&S®NRP-Z81: in steps of 0.5 GHz from 2 GHz to the upper frequency limit; R&S®NRP-Z86: in steps of 1 GHz from 2 GHz to 26 GHz and in steps of 0.5 GHz from 26.5 GHz to 44 GHz). Specifications include zero offset and measurement noise (up to a 2σ value of 0.01 dB).
- Expanded uncertainty (k = 2) for absolute power measurements. Specifications include calibration uncertainty, linearity and temperature effect. Zero offset and measurement noise must additionally be taken into account when measuring low powers, whereas zero drift is negligible over the entire measurement range. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –20 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.01 dB.

Example: The power to be measured with an R&S®NRP-Z56 is 5 µW (–23 dBm) at 48 GHz; ambient temperature +29 °C; averaging number set to 64 in continuous average mode with an aperture time of 5 ms (default).

The absolute uncertainty due to zero offset (after external zeroing) is 25 nW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{5 \mu W + 25 nW}{5 \mu W} = 0.022 dB$$

Using the formula in footnote 9, the absolute noise contribution is 25 nW $\times \sqrt{(10.24 \text{ s/}(64 \times 2 \times 0.005 \text{ s}))}$ = 100 nW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{5 \mu W + 100 nW}{5 \mu W} = 0.086 dB$$

Combined with the value of 0.149 dB specified for the uncertainty of absolute power measurements at 48 GHz and +29 °C ambient temperature, the total expanded uncertainty is

$$\sqrt{0.149^2 + 0.022^2 + 0.086^2} = 0.173 dB$$

- Expanded uncertainty (k = 2) for relative power measurements on CW signals of the same frequency. Specifications include linearity and temperature effect. Zero offset and measurement noise must additionally be taken into account when measuring low powers, whereas zero drift is negligible over the entire measurement range. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –20 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.01 dB. See also the example in footnote 11 for taking into account zero offset and noise with relative measurements.
- 40 With activated auto delay, the beginning of a measurement sequence is delayed so that settled readings are obtained even if the measurement command (remote trigger) coincides with a signal step up to ±10 dB.
- ⁴¹ Expanded uncertainty (k = 2) for absolute power measurements at the calibration level (0 dBm) within a temperature range from +20 °C to +25 °C and at the calibration frequencies (DC, 10 MHz, 50 MHz, 100 MHz, 300 MHz, 500 MHz, 750 MHz; in steps of 500 MHz from 1 GHz to the upper frequency limit). Specifications include zero offset and measurement noise (up to a 2σ value of 0.004 dB).
- ⁴² Error of an absolute power measurement with respect to temperature.
- 43 Expanded uncertainty for relative power measurements referenced to the calibration level (0 dBm), excluding zero offset, zero drift and measurement noise.
- 44 Equivalent source SWR.
- ⁴⁵ Between RF input and RF output (test port).
- Expanded uncertainty (k = 2) for absolute power measurements up to 100 mW (+20 dBm) at the calibration frequencies (see footnote 48). Specifications include calibration uncertainty, linearity, temperature effect and interference from the wave reflected by the load on the RF output. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. If the measured power exceeds 100 mW, the power coefficient of the integrated power splitter must be taken into account (see footnote 51). As a rule of thumb, the contribution of zero offset can be neglected for power levels above –7 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.01 dB.

Example: The power to be measured with an R&S®NRP-Z37 is 50 μW (–13 dBm) at 19 GHz; ambient temperature +29 °C; averaging number set to 64 in continuous average mode with an aperture time of 20 ms.

The maximum absolute uncertainty due to zero offset (after external zeroing) is 400 nW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{50 \, \mu W + \, 400 \, nW}{50 \, \mu W} = 0.035 \, dB$$

Using the formula in footnote 9, the maximum absolute noise contribution is 240 nW × $\sqrt{(10.24 \text{ s}/(64 \times 2 \times 0.02 \text{ s}))}$ = 480 nW, which corresponds to a relative measurement uncertainty of

$$10 \times lg \frac{50 \mu W + 480 nW}{50 \mu W} = 0.042 dB$$

Combined with the value of 0.137 dB specified for the uncertainty of absolute power measurements, the total expanded uncertainty is

$$\sqrt{0.035^2 + 0.042^2 + 0.137^2} dB = 0.148 dB$$

- ⁴⁷ Expanded uncertainty (k = 2) for relative power measurements on CW signals of the same frequency. Specifications include linearity and temperature effect. Zero offset, zero drift and measurement noise must additionally be taken into account when measuring low powers. As a rule of thumb, the contribution of zero offset can be neglected for power levels above –7 dBm if external zeroing has been applied. The contribution of measurement noise can be neglected below 0.01 dB. See also the example in footnote 11 for taking into account zero offset and noise with relative measurements.
- Expanded uncertainty (k = 2) for absolute power measurements at the calibration level (0 dBm) within a temperature range from +20 °C to +25 °C and at the calibration frequencies. Specifications include zero offset and measurement noise (up to a 2σ value of 0.004 dB). The load on the RF signal output must be of a low-reflection type (SWR < 1.05) or load interference correction must be applied.</p>

Calibration frequencies: 0.1/0.5/1/3/5/10/50/100 MHz; in steps of 100 MHz from 100 MHz to the upper frequency limit.

- ⁴⁹ Error of an absolute power measurement with respect to temperature, taking into account the power sensor section, the power splitter and the RF cable (temperature-dependent interference from the load on the RF signal output due to phase change).
- ⁵⁰ Expanded uncertainty for relative power measurements on CW signals of the same frequency, referenced to the calibration level (0 dBm) and excluding zero offset, zero drift and measurement noise.
- ⁵¹ Maximum change of insertion loss of the power splitter with respect to input power, leading to an equivalent measurement error of the power sensor module and a change of the power available at the RF signal output. The power coefficient should be taken into account if the input power exceeds 100 mW (+20 dBm).
- ⁵² Measurement error due to interference of the wave reflected by a mismatched load on the RF signal output. Specifications are indicated for a 0.1 reflection coefficient of the load. Since the load interference error is proportional to the amplitude of the reflected wave, half (twice) the values will be encountered for a reflection coefficient of 0.05 (0.2). The error introduced by an R&S®FSMR26 at the RF signal output does not exceed ±0.06 dB from DC to 2 GHz, ±0.10 dB up to 18 GHz, and ±0.14 dB up to 26.5 GHz.

Values in () represent residual error contribution after numeric load interference correction. This correction function requires the complex reflection coefficient of the load to be transferred to the power sensor module. The residual error contribution of an R&S®FSMR26 at the RF signal output does not exceed ±0.003 dB from DC to 2 GHz, ±0.04 dB up to 18 GHz, and ±0.07 dB up to 26.5 GHz.

 53 Quotient of a measured and a stored power ratio, e.g. for measuring gain compression of amplifiers.

⁵⁴ Two-channel measurements in the trace mode of the R&S®NRP2 will be available in firmware version 07.03 to be released by the end of 2011.

The operating temperature range defines the span of ambient temperature in which the instrument complies with specifications. In the permissible temperature range, the instrument is still functioning but compliance with specifications is not warranted.

⁵⁶ R&S[®]NRP-B2 option required.

 $^{^{57}\,}$ Not in conjunction with the R&S $^{\!8}\text{NRP-B5}$ option.

 $^{^{58}}$ Model .04 with reduced length of connecting cable (0.4 m).

 $^{^{59}\,}$ Order No. 1171.7005.42 includes an R&S 8 NRP-Z4 USB adapter cable (model .04, length: 0.5 m).

⁶⁰ Excluding defects caused by incorrect operation or handling and force majeure. Wear-and-tear parts are not included.

Service that adds value

- Worldwide
- Local and personalized
- Customized and flexible
- Uncompromising qualit
- Long-term dependability

About Rohde & Schwarz

The Rohde & Schwarz electronics group is a leading supplier of solutions in the fields of test and measurement, broadcasting, secure communications, and radiomonitoring and radiolocation. Founded more than 80 years ago, this independent global company has an extensive sales network and is present in more than 70 countries. The company is headquartered in Munich, Germany.

Sustainable product design

- Environmental compatibility and eco-footprint
- Energy efficiency and low emissions
- Longevity and optimized total cost of ownership

Certified Quality Management ISO 9001

Certified Environmental Management

Rohde & Schwarz GmbH & Co. KG

www.rohde-schwarz.com

Regional contact

- Europe, Africa, Middle East | +49 89 4129 12345
 customersupport@rohde-schwarz.com
- North America | 1 888 TEST RSA (1 888 837 87 72) customer.support@rsa.rohde-schwarz.com
- Latin America | +1 410 910 79 88 customersupport.la@rohde-schwarz.com
- Asia/Pacific | +65 65 13 04 88 customersupport.asia@rohde-schwarz.com
- China | +86 800 810 8228/+86 400 650 5896 customersupport.china@rohde-schwarz.com

