8840A
DIGITAL MULTIMETER

Instruction Manual

Table 1-1. Specifications

DC VOLTAGE

Input Characterlstics

RANGE	FULL SCALE 512 DIGITS	RESOLUTION		INPUT RESISTANCE
		51⁄2 DIGITS	4½ DIGITS*	
200 mV	199.999 mV	$1 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	$\geqslant 10,000 \mathrm{M} \Omega$
2 V	1.99999 V	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	$\geqslant 10,000 \mathrm{M} \Omega$
20 V	19.9999 V	$100 \mu \mathrm{~V}$	1 mV	$\geqslant 10,000 \mathrm{M} \Omega$
200 V	199.999 V	1 mV	10 mV	$10 \mathrm{M} \Omega$
1000 V	1000.00 V	10 mV	100 mV	$10 \mathrm{M} \Omega$

* $41 / 2$ digits at the fastest reading rate.

Accuracy

NORMAL (S) READING RATE $\ldots \ldots \ldots . . \pm(\%$ of Reading + Number of Counts).

RANGE	24 HOUR $23 \pm 1^{\circ} \mathrm{C}^{\prime}$	90 DAY $23 \pm 5^{\circ} \mathrm{C}$	1 YEAR $23 \pm 5^{\circ} \mathrm{C}$
$200 \mathrm{mV}^{2}$	$0.003+3$	$0.007+4$	$0.008+4$
2 V	$0.002+2$	$0.004+3$	$0.005+3$
20 V	$0.002+2$	$0.005+3$	$0.006+3$
1000 V	$0.002+2$	$0.005+3$	$0.006+3$

${ }^{1}$ Relative to calibration standards.
${ }^{2}$ Using Offset control
MEDIUM AND FAST RATES: In medium rate, add 2 counts to number of counts. In fast rate, use 2 counts for the number of counts.

Operating Characterlstics

TEMPERATURE COEFFICIENT $\ldots \ldots \ldots .< \pm\left(0.0006 \%\right.$ of Reading +0.3 Count) per ${ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
MAXIMUM INPUT 1000 V dc or peak ac on any range.
NOISE REJECTION
Automatically optimized at power-up for 50,60 , or 400 Hz .

RATE	READINGS/ SECOND	FILTER	NMRR 2	PEAK NM SIGNAL	CMRR 3
S	2.5	 Digital	$>98 \mathrm{~dB}$	20 V or	$>140 \mathrm{~dB}$
M	20	Digital None	$>45 \mathrm{~dB}$	$2 \times \mathrm{FS}^{4}$ F	100

' Reading rate with internal trigger and 60 Hz power line frequency. See "Reading Rates" for more detail.
${ }^{2}$ Normal Mode Rejection Ratio, at 50 or $60 \mathrm{~Hz} \pm 0.1 \%$. The NMRR for $400 \mathrm{~Hz} \pm 0.1 \%$ is 85 dB in S rate and 35 dB in M rate.
${ }^{3}$ Common Mode Rejection Ratio at 50 or $60 \mathrm{~Hz} \pm 0.1 \%$, with $1 \mathrm{k} \Omega$ in series with either lead. The CMRR is $>140 \mathrm{~dB}$ at dc for all reading rates.
${ }^{4} 20$ volts or 2 times Full Scale whichever is greater, not to exceed 1000 V .

Table 1-1. Specifications (cont)
TRUE RMS AC VOLTAGE (OPTION -09) Input Characteristics

		RESOLUTION		INPUT
RANGE	FULL SCALE	RES		
	$51 / 2$ DIGITS	$51 / 2$ DIGITS	$41 / 2$ DIGITS*	IMPEDANCE
200 mV	199.999 mV	$1 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	$1 \mathrm{M} \Omega$
2 V	1.99999 V	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	shunted
20 V	19.9999 V	$100 \mu \mathrm{~V}$	1 mV	by
200 V	199.999 V	1 mV	10 mV	$<100 \mathrm{pF}$
700 V	700.00 V	10 mV	100 mV	

* $41 / 2$ digits at the fastest reading rate.

Accuracy

NORMAL (S) READING RATE $\ldots \pm(\%$ of Reading + Number of Counts).
For sinewave inputs $\geqslant 10,000$ counts ${ }^{1}$.

FREQUENCY (Hz)	24 HOURS $^{2} 23 \pm 1^{\circ} \mathrm{C}$	90 DAY $23 \pm 5^{\circ} \mathrm{C}$	1 YEAR $23 \pm 5^{\circ} \mathrm{C}$
$20-45$	$1.2+100$	$1.2+100$	$1.2+100$
$45-100$	$0.3+100$	$0.35+100$	$0.4+100$
$100-20 \mathrm{k}$	$0.07+100$	$0.14+100$	$0.16+100$
$20 \mathrm{k}-50 \mathrm{k}$	$0.15+120$	$0.19+150$	$0.21+200$
$50 \mathrm{k}-100 \mathrm{k}$	$0.4+300$	$0.5+300$	$0.5+400$

${ }^{1}$ For sine: yave inputs between 1,000 and 10,000 counts, add to Number of Counts 100 counts for frequencies 20 Hz to $20 \mathrm{kHz}, 200$ counts for 20 kHz to 50 kHz , and 500 counts for 50 kHz to 100 kHz .
${ }^{2}$ Relative to calibration standards.

MEDIUM AND FAST READING RATES ... In medium rate, add 50 counts to number of counts. In fast rate the specifications apply for sinewave inputs $\geqslant 1000$ counts and $>100 \mathrm{~Hz}$.

NONSINUSOIDAL INPUTS For nonsinusoidal inputs $\geqslant 10,000$ counts with frequency components $\leqslant 100 \mathrm{kHz}$, add the following $\%$ of reading to the accuracy specifications.

FUNDAMENTAL FREQUENCY	CREST FACTOR		
	1.0 TO 1.5	1.5 TO 2.0	2.0 TO 3.0
45 Hz to 20 kHz			
20 Hz to 45 Hz and 20 kHz to 50 kHz	0.05	0.15	0.3

Operating Characteristics

MAXIMUIM INPUT
700 V rms, 1000 V peak or 2×10^{7} Volts-Hertz product (whichever is less) for any range.

Table 1-1. Specifications (cont)

TEMPERATURE COEFFICIENT \qquad $\pm\left(\%\right.$ of Reading + Number of Counts) per ${ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

FOR INPUTS	FREQUENCY IN HERTZ		
	$20-20 k$	$20 k-50 k$	$50 \mathrm{k}-100 \mathrm{k}$
$\geqslant 10,000$ counts	$0.019+9$	$0.021+9$	$0.027+10$
$\geqslant 1,000$ counts	$0.019+12$	$0.021+15$	$0.027+21$

COMMON MODE REJECTION \qquad $>60 \mathrm{~dB}$ at 50 or 60 Hz with $1 \mathrm{k} \Omega$ in either lead.

CURRENT

Input Characteristics

RANGE	FULL SCALE $51 / 2$ DIGITS	$51 / 2$ DIGITS	RESOLUTION
		$10 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$
2000 mA			

* $41 / 2$ digits at the fastest reading rate.

DC Accuracy

NORMAL (S) READING RATE $\ldots \ldots \ldots . . \pm$ (\% of Reading + Number of Counts).

	90 DAYS $23 \pm 5^{\circ} \mathrm{C}$	1 YEAR $23 \pm 5^{\circ} \mathrm{C}$
$\leqslant 1 \mathrm{~A}$	$0.04+4$	$0.05+4$
$>1 \mathrm{~A}$	$0.1+4$	$0.1+4$

MEDIUM AND FAST READING RATES ... In medium reading rate, add 2 counts to number of counts. In fast reading rate, use 2 counts for number of counts.

AC Accuracy (Option -09)

NORMAL (S) READING RATE
$\pm(\%$ of Reading + Number of Counts).
1 Year, $23 \pm 5^{\circ} \mathrm{C}$, for sinewave inputs $\geqslant 10,000$ counts.

FREQUENCY IN HERTZ		
$20-45$	$45-100$	$100-5 k^{*}$
$2.0+200$	$0.5+200$	$0.4+200$

*Typically 20 kHz

Table 1-1. Specifications (cont)

MEDIUM AND FAST READING RATES
In medium rate, add 50 counts to number of counts. In fast reading rate, for sinewave inputs $\geqslant 1000$ counts and frequencies $>100 \mathrm{~Hz}$, the accuracy is $\pm(0.2 \%$ of reading +30 counts $)$.

NONSINUSOIDAL INPUTS \qquad For nonsinusoidal inputs $\geqslant 10,000$ counts with frequency components $\leqslant 100 \mathrm{kHz}$, add the following \% of reading to the accuracy specifications.

FUNDAMENTAL	CREST FACTOR		
FREQUENCY	1.0 TO 1.5	1.5 TO 2.0	2.0 TO 3.0
45 Hz to 5 kHz	0.05	0.15	0.3
20 Hz to 45 Hz	0.2	0.7	1.5

Operating Characterlstics

TEMPERATURE COEFFICIENT
Less than $0.1 \times$ accuracy specification per ${ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
MAXIMUM INPUT 2A dc or rms ac. Protected with 2A, 250V fuse accessible at front panel, and internal 3A, 600V fuse.
BURDEN VOLTAGE 1 V dc or rms ac typical at full scale.

RESISTANCE

Input Characteristics

RANGE	FULL SCALE $51 / 2$ DIGITS	RESOLUTION		CURRENT			
		$51 / 2$ DIGITS	$41 / 2$ DIGITS*		$	$	1 mA
:---:							
200Ω							
$2 \mathrm{k} \Omega$							

* $41 / 2$ digits at the fastest reading rate.

Accuracy

NORMAL (S) READING RATE $\ldots \ldots \ldots . . \pm\left(\%\right.$ of Reading + Number of Counts) ${ }^{1}$

RANGE	24 HOUR $23 \pm 1^{\circ} \mathrm{C}^{2}$	90 DAY $23 \pm 5^{\circ} \mathrm{C}$	1 YEAR $23 \pm 5^{\circ} \mathrm{C}$
200Ω	$0.004+3$	$0.011+4$	$0.014+4$
$2 \mathrm{k} \Omega$	$0.0028+2$	$0.01+3$	$0.013+3$
$20 \mathrm{k} \Omega$	$0.0028+2$	$0.01+3$	$0.013+3$
$200 \mathrm{k} \Omega$	$0.0028+2$	$0.01+3$	$0.013+3$
$2000 \mathrm{k} \Omega$	$0.023+3$	$0.027+3$	$0.028+3$
$20 \mathrm{M} \Omega$	$0.023+3$	$0.043+4$	$0.044+4$

[^0]Table 1-1. Specifications (cont)

Accuracy, cont

MEDIUM AND FAST READING RATES ... In medium rate, add 2 counts to the number of counts for the 200Ω tnrough $200 \mathrm{k} \Omega$ ranges and 3 counts for the $2000 \mathrm{k} \Omega$ and $20 \mathrm{M} \Omega$ ranges. In fast reading rate, use 3 counts for the number of counts for the 200Ω range, and 2 counts for all other ranges.

Operating Characteristics

TEMPERATURE COEFFICIENT
Less than $0.1 \times$ accuracy specification per ${ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
MEASUREMENT CONFIGURATION
2-wire or 4-wire.
OPEN CIRCUIT VOLTAGE Less than 6.5 V on the 200Ω through $200 \mathrm{k} \Omega$ ranges. Less than 13 V on the $2000 \mathrm{k} \Omega$ and $20 \mathrm{M} \Omega$ ranges.
INPUT PROTECTION
To 300 V rms.

READING RATES

READING RATES
WITH INTERNAL TRIGGER
(readings per second).

RATE	POWER LINE FREQUENCY*		
	50 HZ	60 HZ	400 HZ
S	2.08	2.5	2.38
	16.7	20	19.0
F	100	100	100

*Sensed automatically at power-up.

AUTOMATIC SETTLING TIME DELAY

Time in milliseconds from single trigger to start of A / D conversion, Autorange off.

FUNCTION	RANGE	READING RATE			NUMBER OF COUNTS fROM FINAL VALUE ${ }^{1}$
		S	M	F	
VDC	200 mV	342	61	9	5
	$2 \mathrm{~V}-1000 \mathrm{~V}$	342	17	9	5
V.AC	All	551	551	551	30 (Note 2)
mA DC	2000 mA	342	17	9	5
mA AC	2000 mA	551	551	551	30 (Note 2)
Ohms	200Ω	394	105	17	5
	$2 \mathrm{k} \Omega$	322	17	13	5
	$20 \mathrm{k} \Omega$	342	17	13	5
	$200 \mathrm{k} \Omega$	141	121	21	5
	$2000 \mathrm{k} \Omega$	141	101	81	10
	$20 \mathrm{M} \Omega$	1020	964	723	30

1. Difference between first reading and final value for an in-range step change coincident with trigger.
2. For slow reading rate. 50 counts for medium rate; 10 counts for fast rate.

Table 1-1. Specifications (cont)

EXTERNAL TRIGGER TIMING CHARACTERISTICS

The following diagram shows the nominal timing for the various processes which take place between an external trigger and data sent out on the IEEE-488 interface. Delays will vary if a second trigger comes before the data handshake is complete.

REAR BNC TRIGGER

NOTES: 1. Time from single trigger to start of A/D conversion. (See "Automatic Settling Time Delay" on previous page.) If the delay is disabled by using the T3 or T4 command, then the delay is $1 \mathrm{~ms} \pm 150$ $\mu \mathrm{s}$. When the 8840A is triggered with an IEEE-488 command (GET or?), the automatic settling time delay begins after the trigger command has been processed and recognized.
2. A / D conversion time is dependent on the reading rate and power-line frequency:

RATE	A/D CONVERSION TIME (ms)		
	50 Hz	60 Hz	400 Hz
S	472	395	414
M	52	45	47
F	7	7	7

3. Sample Complete is a 2.5μ s pulse which indicates that the analog input may be changed for the next reading.
4. When talking to a fast controller.

GENERAL

COMMON MODE VOLTAGE	1000 V dc or peak ac, or 700 V rms ac from any input to earth.
TEMPERATURE RANGE	0 to $50^{\circ} \mathrm{C}$ operating, -40 to $70^{\circ} \mathrm{C}$ storage.
HUMIDITY RANGE	$80 \% \mathrm{RH}$ from 0 to $35^{\circ} \mathrm{C}, 70 \%$ to $50^{\circ} \mathrm{C}$.
WARMUP TIME	1 hour to rated specifications.
POWER	$100,120,220$, or 240 V ac $\pm 10 \%$ (250 V ac maximum), switch selectable at rear panel. 50,60 , or 400 Hz , automatically sensed at power-up. 20 VA maximum.
VIBRATION	Meets requirements of MIL-T-28800C for Type III, Class 3, Style E equipment.
PROTECTION	ANSI C39.5 and IEC 348, Class I.
SIZE	8.9 cm high, 21.6 cm wide, 37.1 cm deep(3.47 in high, 8.5 in wide, 14.4 in deep).
WEIGHT	Net, 3.4 kg (7.5 lb); shipping, 5.0 kg (11 lb).
INCLUDED	Line cord, test leads, Instruction/Service Manual, IEEE-488 Quick Reference Guide, (Option -05 only), and instrument performance record.
IEEE-488 INTERFACE FUNCTION	Option allows complete control and data output capability, and supports the following interface function subsets: $\mathrm{SH} 1, \mathrm{AH} 1, \mathrm{~T} 5$, L4, SR1, RL1, DC1, DT1, E1, PP0, and C0.

Figure 1-1. External Dimensions

[^0]: ${ }^{1}$ Using Offset control.
 ${ }^{2}$ Relative to calibration standards.

