/inritsu

RF/Microwave Signal Generators

MG3690B

RF/Microwave Signal Generator, 0.1 Hz to $70 \mathrm{GHz} / 325 \mathrm{GHz}$

Introduction

The MG3690B is the "ideal microwave signal generator" because it offers unsurpassed frequency coverage, leveled output power, spectral purity, switching speed, modulation performance, size, upgradeability, reliability, and service. Our signal generators are configurable for a broad range of applications from R\&D to manufacturing and depot repair. Anritsu provides you a total solution including proven reliability and standard 3 year warranty plus pre- and post-sale support that is the best in the industry.

The Ideal Signal Generator

Specifications

The specifications in the following pages describe the warranted performance of the generator for $25 \pm 10^{\circ} \mathrm{C}$. Typical specifications describe expected, but not warranted, performance based on sample testing.

Frequency Coverage

Model/Option No.	Frequency Coverage	Output Type
MG3691B	2 to 10 GHz	$\mathrm{K}(\mathrm{f})$
MG3692B	2 to 20 GHz	$\mathrm{K}(\mathrm{f})$
MG3693B	2 to 30 GHz	$\mathrm{K}(\mathrm{f})$
MG3694B	2 to 40 GHz	$\mathrm{K}(\mathrm{f})$
MG3695B	2 to 50 GHz	$\mathrm{V}(\mathrm{f})$
MG3696B	2 to 67 GHz	$\mathrm{V}(\mathrm{f})$
Option 4	10 MHz to 2.2 GHz	Model No. Dependent
Option 5	10 MHz to 2 GHz	Model No. Dependent
Option 22	0.1 Hz to 10 MHz	Model No. Dependent

* Operational to 70 GHz

Options 4 and 5: Frequency extension down to 10 MHz
Two options are available to extend the 2 GHz low end frequency limit of the base models down to 10 MHz . Option 4 uses a digital down-converter (DDC) with successive divide-by-two circuitry. It offers the best phase noise performance of the two choices, at the expense of some analog performance $<500 \mathrm{MHz}$. In that range, analog sweep mode is not available, and pulse modulation performance is specified as typical. In addition, frequency and phase modulation mod index is scaled by the division ratio of each band of the DDC. Option 5 maintains all analog performance by using a heterodyne mixing down-converter.
Option 22: Frequency extension down to DC
If frequency coverage down to 0.1 Hz is desired, Option 22 can be added with either Option 4 or 5. Option 22 uses Direct Digital Synthesis (DDS) for CW and Step Sweep modes of operation. Modulation and analog sweep are not available in the DDS band. Frequency resolution $<10 \mathrm{MHz}$ is 0.02 Hz . Output power across the complete instrument frequency range is degraded by 2 dB .

CW Mode

Output: Twenty independent, presettable CW frequencies (FO - F9 and M0-M9).

Accuracy: Same as internal or external 10 MHz time base.

Internal Time Base Stability:

With Aging: $<2 \times 10^{-9} /$ day $\left(<5 \times 10^{-10} /\right.$ day with Option 16)
With Temperature: $<2 \times 10^{-8} / \mathrm{deg} \mathrm{C}$ over $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
($<2 \times 10^{-10} / \mathrm{deg} \mathrm{C}$ with Option 16)

Resolution: 0.01 Hz

External 10 MHz Reference Input: Accepts external $10 \mathrm{MHz} \pm 50 \mathrm{~Hz}$ (typical), 0 to +20 dBm time base signal. Automatically disconnects the internal high-stability time-base option, if installed. BNC, rear panel, 50Ω impedance. Selectable Bandwidth for best phase noise immunity or best phase tracking performance.

10 MHz Reference Output: 1 Vp -p into 50Ω, AC coupled.
Rear panel BNC; 50Ω impedance.
Phase Offset: Adjustable in 0.1 degree steps.
Electronic Frequency Control (EFC) Input: -5 V to +5 V input range;
5×10^{-7}.Fout Hz/V sensitivity (typical); $\leq 250 \mathrm{~Hz}$ Modulation BW; Rear panel BNC; High Impedance

Phase-Locked Step Sweep Mode

Sweep Width: Independently selected, 0.01 Hz to full range. Every frequency step in sweep range is phase-locked.

Accuracy: Same as internal or external 10 MHz time base.
Resolution (Minimum Step Size): 0.01 Hz

Linear/Log Sweep: User-selectable linear or log sweep.
In log sweep, step size logarithmically increases with frequency.
Steps: User-selectable number of steps or the step size.
Number of Steps: Variable from 1 to 10,000
Step Size: 0.01 Hz to the full frequency range of the instrument. (If the step size does not divide into the selected frequency range, the last step is truncated.)

Dwell Time Per Step: Variable from 1 ms to 99 seconds
Fixed Rate Sweep: Allows the user to set the total time of the sweep, including lock time. Variable from 20 ms to 99 seconds.

Analog Sweep Mode (Option 6)

Sweep Width: Independently selected from 1 MHz to full frequency range. With Option 4, Digital Down Converter, Analog sweep is only available $\geq 500 \mathrm{MHz}$. Analog sweep is not available <10 MHz with Option 22.

Accuracy: The lesser of $\pm 30 \mathrm{MHz}$ or ($\pm 2 \mathrm{MHz}+0.25 \%$ of sweep width) for Sweep Speeds of $\leq 50 \mathrm{MHz} / \mathrm{ms}$ (typical)

Sweep Time Range: 30 ms to 99 seconds
Alternate Sweep Mode
Sweeps alternately in step sweep between any two sweep ranges. Each sweep range may be associated with a power level.

Manual Sweep Mode

Provides stepped, phase-locked adjustment of frequency between sweep limits. Userselectable number of steps or step size.

List Sweep Mode

Under GPIB control or via the front panel, up to 4 tables with 2000 non-sequential frequency/power sets can be stored and then addressed as a phase-locked step sweep. One table of 2000 points is stored in non-volatile memory, all other tables are stored in volatile memory.

Programmable Frequency Agility

Under GPIB control, up to 3202 non-sequential frequency/power sets can be stored and then addressed as a phase-locked step sweep. Data stored in volatile memory.

Markers

Up to 20 independent, settable markers (F0 - F9 and M0 - M9).
Video Markers: +5 V or -5 V marker output, selectable from system menus. AUX I/O connector, rear panel.

Intensity Markers: Produces an intensity dot on analog display traces, obtained by a momentary dwell in RF sweep, in analog sweeps of <1 s.

Marker Accuracy: Same as sweep frequency accuracy.

Marker Resolution:

Analog Sweep: 1MHz or Sweep Width/4096 which ever is greater. Step Sweep: 0.01 Hz .

Sweep Triggering

Sweep triggering is provided for Analog Frequency Sweep, Step Frequency Sweep, List Frequency Sweep, and CW Power Sweep.

Auto: Triggers sweep automatically.
External: Triggers a sweep on the low to high transition of an external TTL signal. AUX I/O connector, rear panel.

Single: Triggers, aborts, and resets a single sweep. Reset sweep may be selected to be at the top or bottom of the sweep.

Stored Setups: Stores front panel settings and nine additional front-panel setups in a non-volatile RAM. A system menu allows saving and recalling of instrument setups. Whenever the instrument is turned on, control settings come on at the same functions and values existing when the instrument was turned off.

Memory Sequencing Input: Accepts a TTL low-level signal to sequence through ten stored setups. AUX I/O connector, rear panel.

Self-Test: Instrument self-test is performed when Self-Test soft-key is selected. If an error is detected, an error message is displayed in a window on the LCD identifying the probable cause and remedy.

Secure Mode: Disables all frequency and power level state displays. Stored setups saved in secure mode remain secured when recalled. Mode selectable from a system menu and via GPIB.

Parameter Entry: Instrument-controlled parameters can be entered in three ways: keypad, rotary data knob, or the \wedge and \vee touch pads of the cursor-control key. The keypad is used to enter new parameter values; the rotary data knob and the cursorcontrol key are used to edit existing parameter values. The \wedge and \vee touch pads of the cursor-control key move the cursor left and right one digit under the open parameter. The rotary data knob or the \wedge and \vee touch pads will increment or decrement the digit position over the cursor. Controlled parameters are frequency, power level, sweep time, dwell time, and number of steps. Keypad entries are terminated by pressing the appropriate soft key. Edits are terminated by exiting the edit menu.

Reset: Returns all instrument parameters to predefined default states or values. Any pending GPIB I/O is aborted. Selectable from the system menu.

Master/Slave Operation: Allows two output signals to be swept with a user-selected frequency offset. One instrument controls the other via AUX I/O and SERIAL I/O connections. Requires a Master/Slave Interface Cable Set (Part No. ND36329).

User Level Flatness Correction: Allows user to calibrate out path loss due to external switching and cables via entered power table from a GPIB power meter or calculated data. When user level correction is activated, entered power levels are delivered at the point where calibration was performed. Supported power meters are Anritsu ML2437A, ML2438A, and ML4803A and HP 437B, 438A, and 70100A. Five user tables are available with up to 801 points/table.

Warm Up Time:
From Standby: 30 minutes
From Cold Start (0 deg C): 120 hours to achieve specified frequency stability with aging Instruments disconnected from AC line power for more than 72 hours require 30 days to return to specified frequency stability with aging

Power: 85-264 Vac, 48-440 Hz, 250 VA maximum

Standby: With ac line power connected, unit is placed in standby when front panel power switch is released from the OPERATE position.

Weight: 18 kg maximum
Dimensions: $133 \mathrm{H} \times 429 \mathrm{~W} \times 450 \mathrm{D}$ mm
Warranty: 3 years from ship date

All instrument functions, settings, and operating modes (except for power on/standby) are controllable using commands sent from an external computer via the GPIB (IEEE-488 interface bus).

GPIB Address: Selectable from a system menu
IEEE-488 Interface Function Subset:
Source Handshake: SH1
Acceptor Handshake: AH1
Talker: T6
Listener: L4
Service Request: SR1
Remote/Local: RL1
Parallel Poll: PP1
Device Clear: DC1
Device Trigger: DT1
Controller Capability: C0, C1, C2, C3, C28
Tri-State Driver: E2
GPIB Status Annunciators: When the instrument is operating in Remote, the GPIB status annunciators (listed below) will appear in a window on the front panel LCD.

Remote: Operating on the GPIB (all instrument front panel keys except for the SYSTEM key and the RETURN TO LOCAL soft-key will be ignored).

LLO (Local Lockout): Disables the RETURN TO LOCAL soft-key. Instrument can be placed in local mode only via GPIB or by cycling line power.

Emulations: The instrument responds to the published GPIB commands and responses of the Anritsu Models 6600, 6700,and 6XX00-series signal sources. When emulating another signal source, the instrument will be limited to the capabilities, mnemonics, and parameter resolutions of the emulated instrument.

Environmental (MIL-PRF-28800F, class 3)
Storage Temperature Range: -40 to $+75^{\circ} \mathrm{C}$
Operating Temperature Range: 0 to $+50^{\circ} \mathrm{C}$
Relative Humidity: 5% to 95% at $40^{\circ} \mathrm{C}$
Altitude: 4,600 meters, 43.9 cm Hg
EMI: Meets the emission and immunity requirements of EN61326: 1998

EN55011: 1991/CISPR-11:1990 Group 1 Class A
EN61000-4-2: 1995-4 kV CD, 8 kV AD
EN61000-4-3: 1997 - 3 V/m
EN61000-4-4: 1995-0.5 kV SL, 1 kV PL
EN61000-4-5: 1995-1 kV - 2 kV L-E
EN61000-4-6: 1996
EN61000-4-11: 1994
Vibration: Random, $5-500 \mathrm{~Hz}, 0.015-0.0039 \mathrm{~g}^{2} / \mathrm{Hz}$ PSD Sinusoidal, $5-55 \mathrm{~Hz}, 0.33 \mathrm{~mm}$ displacement

Safety Directive: EN 61010-1: 1993 + A1: 92 + A2: 95

Frequency Switching Time

Definitions

Free Running Mode:
(Step or List Sweep)
$\mathrm{t}_{\mathrm{sw}}=$ Switching Time, Unlocked

Lock Status Indicator
Rear Panel Aux I/O Connector (Pin 11)
(The lock status indicator goes high, when the output is within 1 kHz of the final frequency.)
$\mathrm{t}_{\mathrm{k}}=$ Locked Time $=1 \mathrm{~ms}+\mathrm{t}_{\mathrm{dw}}$
$t_{d w}=$ Dwell Time, after locking. Selectable, 1 ms minimum
$\mathrm{t}_{\mathrm{k}}(\mathrm{min})=2 \mathrm{~ms}$
Single Frequency Trigger Mode:
(List, non-sequential, and CFx modes)

$\mathrm{t}_{\mathrm{r}}=$ Trigger Response Time $=2 \mathrm{~ms}$
(applies to both GPIB and External TTL triggers)

Switching Time (t_{sw})

$\mathrm{t}_{\mathrm{sw}}{ }^{*}(\mathrm{~ms})$	Condition
$5 \mathrm{~ms}+1 \mathrm{~ms} / \mathrm{GHz}$	step not starting at, or crossing dwell frequencies
$7 \mathrm{~ms}+1 \mathrm{~ms} / \mathrm{GHz}$ (typical)	step not starting at, or crossing band switching frequencies
$8 \mathrm{~ms}+1 \mathrm{~ms} / \mathrm{GHz}$ (typical)	step starting at, or crossing band switching frequencies

Band Switching Dwell Frequencies: $\quad 2(2.2$ w/Opt. 4), $10,20,40 \mathrm{GHz}$
Filter Switching Dwell Frequencies: $\quad 3.3,5.5,8.4,13.25,25,32 \mathrm{GHz}$
<2.2 GHz w/Opt. 4: $12.5,15.625,22.5,31.25,43.75,62.5,87.5$, $125,175,250,350,500,700,1050,1500$ MHz
*Not applicable with FM mode active

Spectral Purity

All specifications apply at the lesser of +10 dBm output or maximum specified leveled output power, unless otherwise noted.

Spurious Signals

Harmonic and Harmonically-related:

Frequency Range	Standard
0.1 Hz to 10 MHz (Option 22)	$<-30 \mathrm{dBc}$
10 MHz to $\leq 100 \mathrm{MHz}$ (Option 4)	$<-40 \mathrm{dBC}$
$>100 \mathrm{MHz}$ to $\leq 2.2 \mathrm{GHz}$ (Option 4)	$<-50 \mathrm{dBc}$
10 MHz to $\leq 50 \mathrm{MHz}$ (Option 5)	$<-30 \mathrm{dBc}$
$>50 \mathrm{MHz}$ to $\leq 2 \mathrm{GHz}$ (Option 5)	$<-40 \mathrm{dBc}$
$>2 \mathrm{GHz}(2.2 \mathrm{GHz} /$ Option 4) to $\leq 20 \mathrm{GHz}$	$<-60 \mathrm{dBc}$
$>20 \mathrm{GHz}$ to $\leq 40 \mathrm{GHz}$	$<-40 \mathrm{dBc} *$
$>40 \mathrm{GHz}$ to $\leq 50 \mathrm{GHz}$ (MG3695B)	$<-40 \mathrm{dBc}$
$>40 \mathrm{GHz}$ to $\leq 67 \mathrm{GHz}$ (MG3696B)	$<-25 \mathrm{dBc}$

* -30 dBc typical with high power Option 15
+ 20 GHz to 21 GHz and $39-40 \mathrm{GHz}-20 \mathrm{dBc}$ typical
Non-harmonics:

Frequency Range	Standard
0.1 Hz to 10 MHz (Option 22)	$<-30 \mathrm{dBc}$
10 MHz to $\leq 2.2 \mathrm{GHz}$ (Option 4)	$<-60 \mathrm{dBc}$
10 MHz to $\leq 2 \mathrm{GHz}$ (Option 5)	$<-40 \mathrm{dBc}$
$>2 \mathrm{GHz}(2.2 \mathrm{GHz}$ w/Option 4) to $\leq 67 \mathrm{GHz}$	$<-60 \mathrm{dBc}$

Power Line and Fan Rotation Spurious Emissions (dBc):

Frequency	$<300 \mathrm{~Hz}$	Offset from Carrier	
		300 Hz to 1 kHz	$>1 \mathrm{kHz}$
10 to $\leq 500 \mathrm{MHz}$ (Option 4)	<-68	<-72	<-72
>500 to $\leq 1050 \mathrm{MHz}$ (Option 4)	<-62	<-72	<-72
>1050 to $\leq 2200 \mathrm{MHz}$ (Option 4)	<-56	<-66	<-66
0.01 to $\leq 8.4 \mathrm{GHz}$	<-50	<-60	<-60
>8.4 to $\leq 20 \mathrm{GHz}$	<-46	<-56	<-60
>20 to $\leq 40 \mathrm{GHz}$	<-40	<-50	<-54
>40 to $\leq 67 \mathrm{GHz}$	<-34	<-44	<-48

Residual FM (CW and Step Sweep modes, $50 \mathrm{~Hz}-15 \mathrm{kHz}$ BW):

Frequency Range	Residual FM (Hz RMS)	
	Option 3	Standard
$\leq 8.4 \mathrm{GHz}$	<40	<120
>8.4 to 20 GHz	<40	<220
>20 to $\leq 40 \mathrm{GHz}$	<80	<440
>40 to $\leq 67 \mathrm{GHz}$	<160	<880

Residual FM (Analog Sweep and Unlocked FM modes, 50 Hz - 15 kHz BW):

Frequency Range	Resid ual FM (kHz RMS)	
	Unlocked Narrow FM mode	Unlocked Wide FM mode or Analog Sweep (typ.)
0.01 to $\leq 20 \mathrm{GHz}$	<5	<25
$>20 \mathrm{GHz}$ to $\leq 40 \mathrm{GHz}$	<10	<50
$>40 \mathrm{GHz}$ to $\leq 67 \mathrm{GHz}$	<20	<100

AM Noise Floor:

Typically $<-145 \mathrm{dBm} / \mathrm{Hz}$ at 0 dBm output and offsets $>5 \mathrm{MHz}$ from carrier.

Single-Sideband Phase Noise (dBc/Hz): (Typical)

Frequency Range	Offset from Carrier			
	100 Hz	1 kHz	10 kHz	100 kHz
$\geq 0.1 \mathrm{~Hz}$ to $<10 \mathrm{MHz}$ (Option 22)	$-90(-110)$	$-120(-125)$	$-130(-139)$	$-130(-141)$
$\geq 10 \mathrm{MHz}$ to $<500 \mathrm{MHz}($ Option 4)	$-94(-98)$	$-106(-115)$	$-104(-114)$	$-120(-127)$
$\geq 500 \mathrm{MHz}$ to $<2.2 \mathrm{GHz}($ Option 4)	$-82(-90)$	$-94(-102)$	$-92(-100)$	$-108(-117)$
$\geq 10 \mathrm{MHz}$ to $<2 \mathrm{GHz}($ Option 5)	$-77(-85)$	$-88(-92)$	$-85(-91)$	$-100(-108)$
$\geq 2 \mathrm{GHz}$ to $\leq 6 \mathrm{GHz}$	$-77(-79)$	$-88(-92)$	$-86(-90)$	$-102(-112)$
$>6 \mathrm{GHz}$ to $\leq 10 \mathrm{GHz}$	$-73(-78)$	$-86(-91)$	$-83(-90)$	$-102(-107)$
$>10 \mathrm{GHz}$ to $\leq 20 \mathrm{GHz}$	$-66(-72)$	$-78(-84)$	$-100(-104)$	
$>20 \mathrm{GHz}$ to $\leq 40 \mathrm{GHz}$	$-60(-66)$	$-75(-78)$	$-72(-77)$	$-64(-98)$
$>40 \mathrm{GHz}$ to $\leq 67 \mathrm{GHz}$	$-54(-60)$	$-69(-72)$	$-88(-92)$	

Single-Sideband Phase Noise (dBc/Hz) - Option 30: (Typical)

Frequency Range	Offset from Carrier					
	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	
$\geq 0.1 \mathrm{~Hz}$ to $<10 \mathrm{MHz}($ Option 22)	$-60(-100)$	$-90(-110)$	$-120(-125)$	$-130(-139)$	$-130(-141)$	
$\geq 10 \mathrm{MHz}$ to $<500 \mathrm{MHz}($ Option 4)	$-77(-82)$	$-99(-100)$	$-110(-118)$	$-110(-117)$	$-122(-129)$	
$\geq 500 \mathrm{MHz}$ to $<2.2 \mathrm{GHz}($ Option 4)	$-64(-70)$	$-86(-92)$	$-98(-106)$	$-98(-107)$	$-110(-119)$	$-142(-146)$
$\geq 10 \mathrm{MHz}$ to $<2 \mathrm{GHz}($ Option 5)	$-64(-68)$	$-83(-86)$	$-93(-100)$	$-93(-100)$	$-100(-108)$	
$\geq 2 \mathrm{GHz}$ to $\leq 6 \mathrm{GHz}$	$-54(-61)$	$-77(-82)$	$-93(-98)$	$-93(-99)$	$-102(-112)$	$-111(-115)$
$>6 \mathrm{GHz}$ to $\leq 10 \mathrm{GHz}$	$-52(-60)$	$-73(-78)$	$-93(-96)$	$-93(-99)$	$-105(-112)$	$-120(-136)$
$>10 \mathrm{GHz}$ to $\leq 20 \mathrm{GHz}$	$-45(-49)$	$-68(-73)$	$-86(-91)$	$-86(-93)$	$-100(-108)$	$-125(-135)$
$>20 \mathrm{GHz}$ to $\leq 40 \mathrm{GHz}$	$-45(-49)$	$-63(-67)$	$-80(-85)$	$-80(-87)$	$-94(-102)$	$-119(-129)$
$>40 \mathrm{GHz}$ to $\leq 67 \mathrm{GHz}$	$-57(-61)$	$-74(-79)$	$-74(-81)$	$-88(-96)$	$-113(-123)$	

Single-Sideband Phase Noise (dBc/Hz) - Option 3: (Typical)

Frequency Range	Offset from Carrier					
	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz
$\geq 0.1 \mathrm{~Hz}$ to $<10 \mathrm{MHz}$ (Option 22)	-60 (-100)	-90 (-110)	-120 (-125)	-130 (-139)	-130 (-141)	-130 (-141)
$\geq 10 \mathrm{MHz}$ to $\leq 15.625 \mathrm{MHz}$ (Option 4)	-105 (-118)	-126 (-133)	-139 (-145)	-142 (-148)	-141 (-148)	-145 (-149)
$>15.625 \mathrm{MHz}$ to $\leq 31.25 \mathrm{MHz}$ (Option 4)	-99 (-114)	-120 (-127)	-134 (-144)	-137 (-147)	-137 (-147)	-145 (-150)
$>31.25 \mathrm{MHz}$ to $\leq 62.5 \mathrm{MHz}$ (Option 4)	-90 (-111)	-114 (-121)	-129 (-143)	-136 (-146)	-136 (-146)	-144 (-152)
$>62.5 \mathrm{MHz}$ to $\leq 125 \mathrm{MHz}$ (Option 4)	-88 (-98)	-108 (-116)	-127 (-130)	-135 (-143)	-133 (-143)	-144 (-148)
$>125 \mathrm{MHz}$ to $\leq 250 \mathrm{MHz}$ (Option 4)	-84 (-90)	-102 (-110)	-125 (-129)	-132 (-137)	-130 (-135)	-143 (-147)
$>250 \mathrm{MHz}$ to $\leq 500 \mathrm{MHz}$ (Option 4)	-77 (-83)	-99 (-103)	-123 (-128)	-125 (-131)	-124 (-129)	-142 (-146)
$>500 \mathrm{MHz}$ to $\leq 1050 \mathrm{MHz}$ (Option 4)	-71 (-77)	-93 (-100)	-118 (-122)	-121 (-126)	-119 (-124)	-138 (-144)
$>1050 \mathrm{MHz}$ to $\leq 2200 \mathrm{MHz}$ (Option 4)	-66 (-71)	-86 (-96)	-112 (-116)	-115 (-121)	-113 (-119)	-135 (-143)
$\geq 10 \mathrm{MHz}$ to <2 GHz (Option 5)	-64 (-78)	-83 (-88)	-100 (-106)	-102 (-110)	-102 (-108)	-111 (-115)
$\geq 2 \mathrm{GHz}$ to $\leq 6 \mathrm{GHz}$	-54 (-60)	-77 (-86)	-104 (-108)	-108 (-113)	-107 (-112)	-130 (-136)
$>6 \mathrm{GHz}$ to $\leq 10 \mathrm{GHz}$	-52 (-57)	-73 (-81)	-100 (-105)	-107 (-114)	-107 (-113)	-128 (-136)
$>10 \mathrm{GHz}$ to $\leq 20 \mathrm{GHz}$	-45 (-49)	-68 (-76)	-94 (-100)	-102 (-108)	-102 (-107)	-125 (-135)
$>20 \mathrm{GHz}$ to $\leq 40 \mathrm{GHz}$	-45 (-49)	-63 (-70)	-92 (-94)	-98 (-102)	-98 (-101)	-119 (-129)
$>40 \mathrm{GHz}$ to $\leq 67 \mathrm{GHz}$	-37 (-40)	-57 (-69)	-86 (-88)	-92 (-96)	-90 (-95)	-113 (-123)

*Phase noise is specified and guaranteed only with internal reference. In External Reference mode, the phase noise of the external supplied reference, and the selected external reference bandwidth, will dictate the instrument phase noise performance. Phase noise is not degraded when adding high power Option 15.

Typical MG3690B single sideband phase noise at 10 GHz carrier. Standard and Ultra-Low performance with Option 3.

RF Output

Power level specifications apply at $25 \pm 10^{\circ} \mathrm{C}$.
Maximum Leveled Output Power***:

Model Number	Configuration	Frequency Range (GHz)	Output Power (dBm)	Output Power With Step Attenuator (dBm)	Output Power With Electronic Step Attenuator (dBm)
MG3691B	w/opt 4 or 5 STD	$\begin{gathered} <2^{*} \mathrm{GHz} \\ \geq 2^{* *} \text { to } \leq 10 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +19.0 \\ & +19.0 \end{aligned}$	$\begin{aligned} & +18.0 \\ & +18.0 \end{aligned}$	$\begin{aligned} & +15.0 \\ & +13.0 \end{aligned}$
MG3692B	$\begin{gathered} \text { w/opt } 4 \text { or } 5 \\ \text { STD } \\ \text { STD } \end{gathered}$	$\begin{gathered} <2^{*} \mathrm{GHz} \\ \geq 2^{* *} \text { to } \leq 10 \mathrm{GHz} \\ >10 \text { to } \leq 20 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +19.0 \\ & +19.0 \\ & +17.0 \end{aligned}$	$\begin{aligned} & +18.0 \\ & +18.0 \\ & +15.0 \end{aligned}$	Not Available
MG3693B	$\begin{gathered} \text { w/opt } 4 \text { or } 5 \\ \text { STD } \\ \text { STD } \\ \text { STD } \end{gathered}$	$\begin{aligned} &<2^{*} \mathrm{GHz} \\ & \geq 2^{* *} \text { to } \leq 10 \mathrm{GHz} \\ &>10 \text { to } \leq 20 \mathrm{GHz} \\ &> 20 \text { to } \leq 30 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +15.0 \\ & +15.0 \\ & +12.0 \\ & +6.0 \end{aligned}$	$\begin{aligned} & +14.0 \\ & +14.0 \\ & +10.0 \\ & +3.0 \end{aligned}$	Not Available
MG3694B	$\begin{gathered} \text { w/opt } 4 \text { or } 5 \\ \text { STD } \\ \text { STD } \\ \text { STD } \end{gathered}$	$\begin{aligned} & \quad<2^{*} \mathrm{GHz} \\ & \geq 2^{* *} \text { to } \leq 10 \mathrm{GHz} \\ & >10 \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +15.0 \\ & +15.0 \\ & +12.0 \\ & +6.0 \end{aligned}$	$\begin{aligned} & +14.0 \\ & +14.0 \\ & +10.0 \\ & +3.0 \end{aligned}$	Not Available
MG3695B	$\begin{gathered} \text { w/opt } 4 \text { or } 5 \\ \text { STD } \\ \text { STD } \end{gathered}$	$\begin{gathered} \quad<2^{*} \mathrm{GHz} \\ \geq 2^{* *} \text { to } \leq 20 \mathrm{GHz} \\ >20 \text { to } \leq 50 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +12.0 \\ & +10.0 \\ & +3.0 \end{aligned}$	$\begin{aligned} & +10.0 \\ & +8.0 \\ & +0.0 \end{aligned}$	Not Available
MG3696B	$\begin{gathered} \text { w/opt } 4 \text { or } 5 \\ \text { STD } \\ \text { STD } \end{gathered}$	$\begin{gathered} <2^{*} \mathrm{GHz} \\ \geq 2^{* *} \text { to } \leq 20 \mathrm{GHz} \\ >20 \text { to } \leq 67 \mathrm{GHz} \end{gathered}$	$\begin{gathered} +12.0 \\ +10.0 \\ +3.0 \end{gathered}$	$\begin{aligned} & +10.0 \\ & +8.0 \\ & +0.0 * * * * \end{aligned}$	Not Available

* $\leq 2.2 \mathrm{GHz}$ with Option 4
** $>2.2 \mathrm{GHz}$ with Option 4
*** For output power with Option 22, 0.1 Hz to 10 MHz coverage, derate all specifications by 2 dB
**** Typical 60 to 67 GHz

Maximum Leveled Output Power With Option 15 (High Power) Installed**:

Model Number	Configuration	Frequency Range (GHz)	Output Power (dBm)	Output Power With Step Attenuator (dBm)	Output Power With Electronic Step Attenuator (dBm)
MG3691B	w/opt 4 or 5 w/opt 4 or 5 w/o opt 4 or 5	$\begin{gathered} \quad<2^{*} \mathrm{GHz} \\ \geq 2^{* *} \text { to } \leq 10 \mathrm{GHz} \\ \geq 2 \text { to } \leq 10 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +19.0 \\ & +23.0 \\ & +25.0 \end{aligned}$	$\begin{aligned} & +18.0 \\ & +21.0 \\ & +23.0 \end{aligned}$	$\begin{aligned} & +15.0 \\ & +16.0 \\ & +16.0 \end{aligned}$
MG3692B	w/opt 4 or 5 w/opt 4 or 5 w/o opt 4 or 5	$\begin{gathered} <2^{*} \mathrm{GHz} \\ \geq 2^{* *} \text { to } \leq 20 \mathrm{GHz} \\ \geq 2 \text { to } \leq 20 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +19.0 \\ & +21.0 \\ & +23.0 \end{aligned}$	$\begin{aligned} & +18.0 \\ & +19.0 \\ & +21.0 \end{aligned}$	Not Available
MG3693B	w/opt 4 or 5 w/opt 4 or 5 w/opt 4 or 5 w/o opt 4 or 5 w/o opt 4 or 5	$\begin{gathered} \quad<2^{*} \mathrm{GHz} \\ \geq 2^{* *} \text { to } \leq 20 \mathrm{GHz} \\ >20 \text { to } \leq 30 \mathrm{GHz} \\ \geq 2 \text { to } \leq 20 \mathrm{GHz} \\ >20 \text { to } \leq 30 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +17.0 \\ & +21.0 \\ & +17.0 \\ & +23.0 \\ & +19.0 \end{aligned}$	$\begin{aligned} & +16.0 \\ & +19.0 \\ & +15.0 \\ & +21.0 \\ & +17.0 \end{aligned}$	Not Available
MG3694B	w/opt 4 or 5 w/opt 4 or 5 w/opt 4 or 5 w/o opt 4 or 5 w/o opt 4 or 5	$\begin{aligned} &<2^{*} \mathrm{GHz} \\ & \geq 2^{* *} \text { to } \leq 20 \mathrm{GHz} \\ &>20 \text { to } \leq 40 \mathrm{GHz} \\ & \geq 2 \text { to } \leq 20 \mathrm{GHz} \\ &>20 \text { to } \leq 40 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +17.0 \\ & +21.0 \\ & +17.0 \\ & +23.0 \\ & +19.0 \end{aligned}$	$\begin{aligned} & +16.0 \\ & +19.0 \\ & +15.0 \\ & +21.0 \\ & +17.0 \end{aligned}$	Not Available
MG3695B	w/opt 4 or 5 w/o opt 4 or 5 w/o opt 4 or 5 w/o opt 4 or 5	$\begin{aligned} & \quad<2^{*} \mathrm{GHz} \\ & \geq 2^{* *} \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 40 \mathrm{GHz} \\ & >40 \text { to } \leq 50 \mathrm{GHz} \\ & \geq 2 \text { to } \leq 20 \mathrm{GHz} \\ & >20 \text { to } \leq 40 \mathrm{GHz} \\ & >40 \text { to } \leq 50 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +16 \\ & +21 \\ & +17 \\ & +11 \\ & +23 \\ & +19 \\ & +13 \end{aligned}$	$\begin{gathered} +14 \\ +19 \\ +15 \\ +8 \\ +21 \\ +17 \\ +10 \end{gathered}$	Not Available
MG3696B	$\begin{aligned} & \text { w/opt } 4 \text { or } 5 \\ & \text { w/opt } 4 \text { or } 5 \\ & \text { w/opt } 4 \text { or } 5 \\ & \text { w/opt } 4 \text { or } 5 \\ & \text { w/opt } 4 \text { or } 5 \\ & \text { w/o opt } 4 \text { or } 5 \\ & \text { w/o opt } 4 \text { or } 5 \\ & \text { w/o opt } 4 \text { or } 5 \\ & \text { w/o opt } 4 \text { or } 5 \end{aligned}$	$<2^{*} \mathrm{GHz}$ $\geq 2^{* *}$ to $\leq 20 \mathrm{GHz}$ >20 to $\leq 40 \mathrm{GHz}$ >40 to $\leq 67 \mathrm{GHz}$ >67 to $\leq 70 \mathrm{GHz}$ ≥ 2 to $\leq 20 \mathrm{GHz}$ >20 to $\leq 40 \mathrm{GHz}$ >40 to $\leq 67 \mathrm{GHz}$ >67 to $\leq 70 \mathrm{GHz}$	$\begin{gathered} +16 \\ +19 \\ +16 \\ +9 \\ +3^{* * * * *} \\ +21 \\ +19 \\ +9 \\ +3^{* * * * *} \end{gathered}$	$\begin{gathered} +15 \\ +18 \\ +14 \\ +6^{* * *} \\ 0^{* * * * *} \\ +19 \\ +16 \\ +6^{* * * *} \\ 0^{* * * * *} \end{gathered}$	Not Available

* $\leq 2.2 \mathrm{GHz}$ with Option 4
** $>2.2 \mathrm{GHz}$ with Option 4
*** For output power with Option $22,0.1 \mathrm{~Hz}$ to 10 MHz coverage, derate all specifications by 2 dB
**** Typical 60 to 67 GHz
***** Typical

Minimum Leveled Output Power
Without an Attenuator: -5 dBm (-10 dBm typical)
With an Attenuator: - 105 dBm (MG3691B, MG3692B, MG3693B, and MG3694B) -95 dBm (MG3695B, and MG3696B)

With an Electronic Attenuator: - 115 dBm (MG3691B)
Unleveled Output Power Range (typical)
Without an Attenuator: $>40 \mathrm{~dB}$ below max power.
With an Attenuator: >130 dB below max power.

* $\leq 2.2 \mathrm{GHz}$ with Option 4
${ }^{* *}>2.2 \mathrm{GHz}$ with Option 4

Power Level Switching Time (to within specified accuracy)
Without Change in Step Attenuator: <3 ms typical
With Change in Step Attenuator: <20 ms typical
With Change in Electronic Step Attenuator: $<3 \mathrm{~ms}$ typical. Power level changes across -70 dB step will result in 20 ms delay.
Step Attenuator (Option 2)
Adds a $10 \mathrm{~dB} /$ step attenuator, with 110 dB range on models $\leq 40 \mathrm{GHz}$, and 90 dB range on models $>40 \mathrm{GHz}$. Option 2E adds an electronic version with 120 dB range, only available on an MG3691B. Option 2E is not available on units with Option 22, coverage down to 0.1 Hz .

Accuracy and Flatness

Accuracy specifies the total worst case accuracy. Flatness is included within the accuracy specification.

Step Sweep and CW Modes:

Attenuation Below Max Power	Frequency (GHz)			
	≤ 40 **	40-50	50-60	60-67
Accuracy:				
0-25 dB	$\pm 1.0 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$
25-60 dB	$\pm 1.0 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$ *	N/A
$60-100 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}^{*}$	$\pm 3.5 \mathrm{~dB} *$	N/A
Flatness:				
0-25 dB	$\pm 0.8 \mathrm{~dB}$	$\pm 1.1 \mathrm{~dB}$	$\pm 1.1 \mathrm{~dB}$	$\pm 1.1 \mathrm{~dB}$
25-60 dB	$\pm 0.8 \mathrm{~dB}$	$\pm 1.1 \mathrm{~dB}$	$\pm 3.1 \mathrm{~dB}^{*}$	N/A
60-100 dB	$\pm 0.8 \mathrm{~dB}$	$\pm 2.1 \mathrm{~dB}^{*}$	$\pm 3.1 \mathrm{~dB}^{*}$	N/A

*Typical
${ }^{* *}$ Accuracy and Flatness with high power Option 15 , is $\pm 1.5 \mathrm{~dB}$.

Analog Sweep Mode (typical):

Attenuation Below Max Power	Frequency (GHz)			
	$\mathbf{0 . 0 1 - 0 . 0 5}$	$\mathbf{0 . 0 5 - 2 0}$	$\mathbf{5 0 - 4 0}$	$\mathbf{4 0 - 6 7}$
	$\pm 2.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$
$12-30 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$	$\pm 4.6 \mathrm{~dB}$	$\pm 5.6 \mathrm{~dB}$
$30-60 \mathrm{~dB}$	$\pm 4.0 \mathrm{~dB}$	$\pm 4.0 \mathrm{~dB}$	$\pm 5.2 \mathrm{~dB}$	$\pm 6.2 \mathrm{~dB}$
$60-122 \mathrm{~dB}$	$\pm 5.0 \mathrm{~dB}$	$\pm 5.0 \mathrm{~dB}$	$\pm 6.2 \mathrm{~dB}$	$\pm 7.2 \mathrm{~dB}$
Flatness:				
$0-12 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$
$12-30 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$	$\pm 4.1 \mathrm{~dB}$	$\pm 5.1 \mathrm{~dB}$
$30-60 \mathrm{~dB}$	$\pm 4.0 \mathrm{~dB}$	$\pm 4.0 \mathrm{~dB}$	$\pm 4.6 \mathrm{~dB}$	$\pm 5.6 \mathrm{~dB}$
$60-122 \mathrm{~dB}$	$\pm 5.0 \mathrm{~dB}$	$\pm 5.0 \mathrm{~dB}$	$\pm 5.2 \mathrm{~dB}$	$\pm 6.2 \mathrm{~dB}$

Typical MG3692B maximum available output power

Typical MG3694B maximum available output power

Output Units: Output units selectable as either dBm or mV . Selection of mV assumes 50Ω load. All data entry and display are in the selected units.
Output Power Resolution: 0.01 dB or 0.001 mV
Source Impedance: 50Ω nominal
Source SWR (Internal Leveling): <2.0 typical
Power Level Stability with Temperature: $0.04 \mathrm{~dB} / \mathrm{deg} \mathrm{C}$ typical
Level Offset: Offsets the displayed power level to establish a new reference level.
Output On/Off: Toggles the RF output between an Off and On state. During the Off state, the RF oscillator is turned off. The On or Off state is indicated by two LEDs located below the OUTPUT ON/OFF key on the front panel.
RF On/Off Between Frequency Steps: System menu selection of RF On or RF Off during frequency switching in CW, Step Sweep, and List Sweep modes.
RF On/Off During Retrace: System menu selection of RF On or RF Off during retrace.
Internal Leveling: Power is leveled at the output connector in all modes.
External Leveling:
External Detector: Levels output power at a remote detector location. Accepts a positive or negative 0.5 mV to 500 mV input signal from the remote detector. L1 adjusts the input signal range to an optimum value. BNC connector, rear panel.
External Power Meter: Levels output power at a remote power meter location. Accepts a $\pm 1 \mathrm{~V}$ full scale input signal from the remote power meter. L1 adjusts the input signal range to an optimum value. BNC connector, rear panel.
External Leveling Bandwidth: 30 kHz typical in Detector mode. 0.7 Hz typical in Power Meter mode.
User Level Flatness Correction:
Number of points: 2 to 801 points per table
Number of tables: 5 available
Entry modes: GPIB power meter or computed data

CW Power Sweep

Range: Sweeps between any two power levels at a single CW frequency.
Resolution: $0.01 \mathrm{~dB} / \mathrm{step}$ (Log) or 0.001 mV (Linear)
Accuracy: Same as CW power accuracy.
Log/Linear Sweep: Power sweep selectable as either log or linear. Log sweep is in dB ; linear sweep is in mV .
Step Size: User-controlled, $0.01 \mathrm{~dB}(\mathrm{Log})$ or 0.001 mV (Linear) to the full power range of the instrument.
Step Dwell Time: Variable from 1 ms to 99 seconds. If the sweep crosses a step attenuator setting, there will be a sweep dwell of approximately 20 ms to allow setting of the step attenuator.

Sweep Frequency/Step Power
A power level step occurs after each frequency sweep. Power level remains constant for the length of time required to complete each sweep.

Internal Power Monitor (Option 8)
Sensors: Compatible with Anritsu 560-7, 5400-71, or 6400-71 series detectors.
Rear panel input.
Range: +16 dBm to -35 dBm
Accuracy: $\pm 1 \mathrm{dBm},(+16$ to $-10 \mathrm{dBm})$
$\pm 2 \mathrm{dBm},(-10$ to $-35 \mathrm{dBm})$
Resolution: 0.1 dBm minimum

Typical MG3695B maximum available output power

Modulation

Frequency/Phase Modulation (Option 12)
Option 12 adds frequency and phase modulation, driven externally via a rear panel BNC connector, 50Ω. For internal modulation, add Internal LF Generator and Pulse Generator Option 27. Frequency/Phase Modulation is not available $<10 \mathrm{MHz}$ with Option 22.

For the most accurate FM and ФM measurements, Bessel Null methods are used. When verifying FM and ΦM, the use of the "carrier null" technique is recommended. Measured residual FM effects must be subtracted from modulation meter measurements.

Frequency Generator Multiplication/Division Ratios:

Frequency Range	Divide Ratio, \mathbf{n}
$<10 \mathrm{MHz}$ (Option 22)	modulation not available
≥ 10 to $\leq 15.625 \mathrm{MHz}$ (Option 4)	256
>15.625 to $\leq 31.25 \mathrm{MHz}$ (Option 4)	128
>31.25 to $\leq 62.5 \mathrm{MHz}$ (Option 4)	64
>62.5 to $\leq 125 \mathrm{MHz}$ (Option 4)	32
>125 to $\leq 250 \mathrm{MHz}$ (Option 4)	16
>250 to $\leq 500 \mathrm{MHz}$ (Option 4)	8
>500 to $\leq 1050 \mathrm{MHz}$ (Option 4)	4
>1050 to $\leq 2200 \mathrm{MHz}$ (Option 4)	2
>10 to $\leq 2000 \mathrm{MHz}$ (Option 5)	1
>2 to $\leq 20 \mathrm{GHz}$	1
>20 to $\leq 40 \mathrm{GHz}$	$1 / 2$
>40 to $\leq 67 \mathrm{GHz}$	$1 / 4$

Frequency Modulation:

Parameter	Modes	Conditions	Specifications	Conditions	Specifications
		for all Frequencies other than <2.2 GHz with Option 4		for Frequencies <2.2 GHz with Option 4	
Deviation	Locked	Rate $=1 \mathrm{kHz}$ to 8 MHz	$\pm \begin{gathered} \pm \text { Lesser of } 10 \mathrm{MHz} \text { or } 300^{*} \\ (\bmod \text { rate) }) / \mathrm{n} \end{gathered}$	Rate $=1 \mathrm{kHz}$ to (Lesser of 8 MHz or 0.03 * Fcarrier)	\pm [Lesser of 10 MHz or 300 * (mod rate)]/n
	Locked Low-noise	Rate $=50 \mathrm{kHz}$ to 8 MHz	$\pm[$ Lesser of 10 MHz or 3 * (mod rate) $) / \mathrm{n}$	Rate $=50 \mathrm{kHz}$ to (Lesser of 8 MHz or 0.03 * Fcarrier)	$\pm[$ Lesser of 10 MHz or 3 * (mod rate) $) / \mathrm{n}$
	Unlocked Narrow	Rate= DC to 8 MHz	$\pm 10 \mathrm{MHz} / \mathrm{n}$	$\begin{aligned} & \text { Rate }=\text { DC to (Lesser of } \\ & 8 \mathrm{MHz} \text { or } 0.03{ }^{*} \text { Fcarrier) } \end{aligned}$	$\pm(10 \mathrm{MHz}) / \mathrm{n}$
	Unlocked Wide	Rate= DC to 100 Hz	$\pm 100 \mathrm{MHz} / \mathrm{n}$	Rate = DC to 100 Hz	$\pm(100 \mathrm{MHz}) / \mathrm{n}$
Bandwidth (3 dB)	Locked		1 kHz to 10 MHz		$\begin{gathered} 1 \mathrm{kHz} \text { to (Lesser of } 10 \mathrm{MHz} \text { or } \\ 0.03 * \text { Fcarrier) } \end{gathered}$
	Locked Low-noise		30 kHz to 10 MHz		30 kHz to (Lesser of 8 MHz or 0.03 * Fcarrier)
	Unlocked Narrow		DC to 10 MHz		DC to (Lesser of 10 MHz or 0.03 * Fcarrier)
	Unlocked Wide		DC to 100 Hz		DC to 100 Hz
Flatness	Locked	Rate $=10 \mathrm{kHz}$ to 1 MHz	$\pm 1 \mathrm{~dB}$ relative to 100 kHz	$\begin{aligned} & \text { Rate }=10 \mathrm{kHz} \text { to (Lesser of } \\ & 1 \mathrm{MHz} \text { or } 0.01^{*} \text { Fcarrier) } \end{aligned}$	$\pm 1 \mathrm{~dB}$ relative to 100 kHz
Accuracy	Locked and Low-noise Unlocked Narrow	Rate $=100 \mathrm{kHz}$ sinewave Int. or 1 Vpk Ext.	10\% (5\% typical)	Rate $=100 \mathrm{kHz}$ sinewave Int. or 1 Vpk Ext.	10\% (5\% typical)
Incidental AM	Locked and Low-noise Unlocked Narrow	1 MHz Rate, $\pm 1 \mathrm{MHz}$ Dev.	<2\% typical	$\begin{gathered} \text { Rate and Dev. }=\text { Lesser of } 1 \mathrm{MHz} \\ \text { or } 0.01^{*} \text { Fcarrier } \end{gathered}$	<2\% typical
Harmonic Distortion	Locked	10 MHz Rate, $\pm 1 \mathrm{MHz}$ Dev.	<1\%	Rate $=10 \mathrm{kHz}$, Dev. $= \pm(1 \mathrm{MHz}) / \mathrm{n}$	<1\%
External Sensitivity	Locked Locked Low-noise Unlocked Narrow Unlocked Wide	($\pm 1 \mathrm{~V}$ maximum input)	$\begin{gathered} \pm(10 \mathrm{kHz} / \mathrm{V} \text { to } 20 \mathrm{MHz} / \mathrm{V}) / \mathrm{n} \\ \prime \prime \\ \pm(100 \mathrm{kHz} / \mathrm{V} \text { to } 100 \mathrm{MHz} / \mathrm{V}) / \mathrm{n} \end{gathered}$	(± 1 Vpk maximum input)	$\begin{gathered} \pm(10 \mathrm{kHz} / \mathrm{V} \text { to } 20 \mathrm{MHz} / \mathrm{V}) / \mathrm{n} \\ " / \\ \pm(100 \mathrm{kHz} / \mathrm{V} \text { to } 100 \mathrm{MHz} / \mathrm{V}) / \mathrm{n} \end{gathered}$

Phase Modulation:

Parameter	Modes	Conditions	Specifications	Conditions	Specifications
		for all Frequencies other than <2.2 GHz with Option 4		for Frequencies <2.2 GHz with Option 4	
Deviation	Narrow	Rate= DC to 8 MHz	\pm [Lesser of 3 rad or ($5 \mathrm{MHz} / \mathrm{mod}$ rate) $] / \mathrm{n}$	$\begin{aligned} & \text { Rate }=\mathrm{DC} \text { to (Lesser of } \\ & 8 \mathrm{MHz} \text { or } 0.03^{*} \text { Fcarrier) } \end{aligned}$	\pm [Lesser of 3 rad or ($5 \mathrm{MHz} / \mathrm{mod}$ rate) $) / \mathrm{n}$
	Wide	Rate= DC to 1 MHz	\pm [Lesser of 400 rad or ($10 \mathrm{MHz} / \mathrm{mod}$ rate) $) / \mathrm{n}$	$\begin{aligned} & \text { Rate }=\mathrm{DC} \text { to (Lesser of } \\ & 1 \mathrm{MHz} \text { or } 0.03{ }^{*} \text { Fcarrier) } \end{aligned}$	\pm [Lesser of 400 rad or ($10 \mathrm{MHz} / \mathrm{mod}$ rate) $) / \mathrm{n}$
Bandwidth (3 dB)	Narrow		DC to 10 MHz		$\begin{gathered} \hline \text { DC to (Lesser of } 10 \mathrm{MHz} \text { or } \\ 0.03 \text { * Fcarrier) } \\ \hline \end{gathered}$
	Wide		DC to 1 MHz		DC to (Lesser of 1 MHz or 0.03 * Fcarrier)
Flatness	Narrow	Rate= DC to 1 MHz	$\pm 1 \mathrm{~dB}$ relative to 100 kHz	$\begin{aligned} & \text { Rate }=\mathrm{DC} \text { to (Lesser of } 1 \mathrm{MHz} \\ & \text { or } 0.01^{*} \text { Fcarrier) } \end{aligned}$	$\pm 1 \mathrm{~dB}$ relative to 100 kHz rate
	Wide	Rate= DC to 500 kHz	$\pm 1 \mathrm{~dB}$ relative to 100 kHz	$\begin{aligned} \text { Rate }= & \text { DC to (Lesser of } 500 \mathrm{kHz} \\ & \text { or } 0.01^{*} \text { Fcarrier) } \end{aligned}$	$\pm 1 \mathrm{~dB}$ relative to 100 kHz rate
Accuracy	Narrow and Wide	100 kHz Internal or 1Vpk External, sine	10\%	100 kHz Internal or 1Vpk External, sine	10\%
External Sensitivity	Narrow Wide	($\pm 1 \mathrm{~V}$ maximum input)	$\pm(0.0025 \mathrm{rad} / \mathrm{V}$ to $5 \mathrm{rad} / \mathrm{V}) / \mathrm{n}$ $\pm(0.25 \mathrm{rad} / \mathrm{V}$ to $500 \mathrm{rad} / \mathrm{V}) / \mathrm{n}$	(± 1 Vpk maximum input)	$\pm(0.0025 \mathrm{rad} / \mathrm{V}$ to $5 \mathrm{rad} / \mathrm{V}) / \mathrm{n}$ $\pm(0.25 \mathrm{rad} / \mathrm{V}$ to $500 \mathrm{rad} / \mathrm{V}) / \mathrm{n}$

Amplitude Modulation (Option 14)
Option 14 adds amplitude modulation, driven externally via a rear panel BNC connector 50Ω. For internal modulation, add Internal LF and Pulse Generators Option 27.

All amplitude modulation specifications apply at 50% depth, 1 kHz rate, with RF level set 6 dB below maximum specified leveled output power, unless otherwise noted. Amplitude Modulation is not available $<10 \mathrm{MHz}$ with Option 22.

AM Depth (typical): 0-90\% linear; 20 dB log

AM Bandwidth (3 dB):

DC to 50 kHz minimum
DC to 100 kHz typical
Flatness (DC to 10 kHz rates): $\pm 0.3 \mathrm{~dB}$
Accuracy: Reading $\pm 5 \%$
Distortion: < 5% typical
Incidental Phase Modulation (30\% depth, 10 kHz rate):
<0.2 radians typical
External AM Input: Log AM or Linear AM input, rear-panel BNC, 50Ω input impedance. For internal modulation, add LF Generator Option 27.

Sensitivity:

Log AM: Continuously variable from 0 dB per volt to 25 dB per volt.
Linear AM: Continuously variable from 0\% per volt to 100% per volt.
Maximum Input: $\pm 1 \mathrm{Vpk}$
Pulse Modulation (Option 26)
Option 26 adds pulse modulation, driven externally via a rear panel BNC connector,
TTL. For internal modulation, add Internal LF and Pulse Generators Option 27.
Pulse modulation specifications apply at maximum rated power, unless otherwise noted. Pulse modulation is not available $<10 \mathrm{MHz}$ with Option 22.

On/Off Ratio: >80 dB (>70 dB with high power Option 15)

Minimum Leveled Pulse Width:

$100 \mathrm{~ns}, \geq 1 \mathrm{GHz}$
$1 \mu \mathrm{~s},<1 \mathrm{GHz}$
Minimum Unleveled Pulse Width: <10 ns
Level Accuracy Relative to CW (100 Hz to 1 MHz PRF):
$\pm 0.5 \mathrm{~dB}, \geq 1 \mu$ s pulse width
$\pm 1.0 \mathrm{~dB},<1 \mu$ s pulse width
Pulse Delay (typical): 50 ns in External Mode

PRF Range:

DC to 10 MHz , unleveled
100 Hz to 5 MHz , leveled

Frequency Range	Rise and Fall Time (10\% to 90%)	Overshoot	Pulse Width Compression	Video Feedthrough
$\begin{aligned} & \geq 10 \text { to }<31.25 \mathrm{MHz} \\ & \quad \text { (Opt. 4) } \end{aligned}$	400 ns*	33\%*	$40 \mathrm{~ns}{ }^{*}$	$\pm 70 \mathrm{mV}$ *
$\begin{gathered} \geq 31.25 \text { to }<125 \mathrm{MHz} \\ \text { (Opt. 4) } \end{gathered}$	90 ns*	22\%*	12 ns*	$\pm 130 \mathrm{mV}{ }^{*}$
$\begin{gathered} \geq 125 \text { to }<500 \mathrm{MHz} \\ \quad \text { (Opt. 4) } \end{gathered}$	33 ns*	11\%*	12 ns*	$\pm 70 \mathrm{mV}$ *
$\begin{aligned} & \geq 500 \text { to }<2200 \mathrm{MHz} \\ & \quad \text { (Opt. 4) } \end{aligned}$	15 ns	10\%	12 ns*	$\pm 15 \mathrm{mV}{ }^{*}$
$\begin{aligned} & \geq 10 \text { to }<1000 \mathrm{MHz} \\ & \quad \text { (Opt. 5) } \end{aligned}$	$15 \mathrm{~ns}, 10 \mathrm{~ns} *$	10\%	8 ns*	$\pm 30 \mathrm{mV}{ }^{*}$
$\begin{aligned} & \geq 1 \text { to }<2 \mathrm{GHz} \\ & \quad \text { (Opt. 5) } \end{aligned}$	$10 \mathrm{~ns}, 5 \mathrm{~ns} *$	10\%	8 ns*	$\pm 30 \mathrm{mV}$ *
≥ 2 to $67 \mathrm{GHz}^{\text {3 }}$	$10 \mathrm{~ns}, 5 \mathrm{~ns}{ }^{*}$	10\% ${ }^{(1)}$	$8 \mathrm{~ns}{ }^{*}$	$\pm 30 \mathrm{mV}{ }^{*}$

External Input: Rear-panel BNC. For internal modulation, add Pulse Generator Option 27
Drive Level: TTL compatible input
Input Logic: Positive-true or negative-true, selectable from modulation menu.

Internal LF and Pulse Generators (Option 27)
An internal pulse generator and two internal waveform generators are added, one providing a frequency or phase modulating signal and the other an amplitude modulating signal. This Internal LF and Pulse Generators option can only be ordered in combination with either $\mathrm{FM} / \Phi M, \mathrm{AM}$, or Pulse options, 12,14 , and 26 respectively.

Waveforms: Sinusoid, square-wave, triangle, positive ramp, negative ramp, Gaussian noise, uniform noise. (Check Option 10 for User-Defined)

Rate:
0.1 Hz to 10 MHz sinusoidal
0.1 Hz to 100 kHz square-wave, triangle, ramps

Resolution: 0.1 Hz
Accuracy: Same as instrument timebase $\pm 0.014 \mathrm{~Hz}$
Waveform Outputs: Two BNC connectors on the rear panel, FM/ФM OUT and AM OUT
Pulse Modes: Singlet, doublet, triplet, quadruplet
Pulse Triggers: Free-run, triggered, gated, delayed, triggered with delay, swept-delay
Pulse Inputs/Outputs: Video pulse and sync out, rear-panel BNC connectors

Pulse Parameter	Selectable Clock Rate	
	30 ns to 160 ms	Wide $(10 \mathrm{MHz})$
Pulse Period $^{(2)}$	100 ns to 160 ms	600 ns to 1.6 s
Variable Delay		
Singlet	0 to 160 ms	0 to 1.6 s
Doublet	100 ns to 160 ms	300 ns to 1.6 s
Triplet	100 ns to 160 ms	300 ns to 1.6 s
Quadruplet	100 ns to 160 ms	300 ns to 1.6 s
Resolution	10 ns	100 ns
Accuracy	$10 \mathrm{~ns}(5 \mathrm{~ns}$ typical)	$10 \mathrm{~ns}(5 \mathrm{~ns}$ typical)

(1) For 50 and 67 GHz units, overshoot $>40 \mathrm{GHz}$ is 20% typical at rated power.
(2) Period must be longer than the sum of delay and width by 5 clock cycles minimum.
(3) Rise time and Pulse Width Compression, >20 GHz, degrades by 2 ns , with High Power Option 15.

* Typical

IF Up-Conversion (Option 7)

Option 7 adds an internal mixer that can be used for the generic up-conversion of an IF signal. The mixer's RF, LO, and IF ports are made available at the rear panel of the MG3690B, via three female K-Connectors. The typical application will feed the MG3690B microwave output, which can be moved to the rear panel via option 9 K , to the mixer's LO port. An external IF signal will be fed to the mixer's IF port. The new up-converted signal will be available at the mixer's $R F$ port.

Mixer Type	Double Balanced
RF, LO Range	1 to 40 GHz
IF Range	DC to 700 MHz
Conversion Loss	10 dB Typical
Max Power into any Port	30 dBm
Isolation, RF to LO	23 dB
LO Drive Level (recommended)	+10 to +13 dBm
Input $P_{1 \mathrm{~dB}}$	+3 dBm Typical

The IF Up-Conversion option is particularly useful to create a microwave frequency IQ-modulated signal. Lower frequency IQ-modulated RF sources are readily available, such as the Anritsu MG3681A. Option 7's IF input can be used to feed in an IQ-modulated signal from an MG3681A, up-converting it to as high as 40 GHz with an MG3694B. A typical setup is shown below.

User-Defined Modulation Waveform Software (Option 10)

An external software package provides the ability to download user-defined waveforms into the internal LF Generator's (Option 27) memory. The MG3690B provides as standard with the LF Generator sinusoidal, square-wave, triangle, positive ramp, Gaussian noise, and uniform noise waveforms.

Two look-up tables of 65,536 points can be used to generate two pseudo-random waveforms, one for amplitude modulation and the other for frequency or phase modulation. The download files are simple space-delimited text files containing integer numbers between 0 and 4095, where 0 corresponds to the minimum modulation level and 4095 the maximum.

In addition to the capability of downloading custom waveforms, the software offers a virtual instrument modulation panel. Custom modulation setups with user waveforms can be stored for future use. For IFF signal simulation, the internal generators can be synchronized. They can also be disconnected from the internal modulators, making the low frequency waveforms available at the rear panel for external purposes.

Scan Modulation (Option 20)
Option 20 adds a microwave linearly controlled attenuator to provide deep AM capability. This modulator is inserted outside the leveling loop but before the optional step alternator. It is switched in and out of the RF path. Scan modulation is driven externally only.

One application of this feature is storing an antenna pattern wave form in memory and using it to feed the external input to the scan modulator, Option 20.

Frequency Range	2 to 18 GHz
Attenuation Range	0 to 60 dB
Flatness/Accuracy	$\pm 1.5 \mathrm{~dB} / \pm 1.5 \mathrm{~dB}, 0$ to 40 dB
	$\pm 3 \mathrm{~dB} / \pm 2 \mathrm{~dB}, 40$ to 60 dB
Step Response	$<1 \mu \mathrm{~s}$
Sensitivity	$-10 \mathrm{~dB} / \mathrm{V}$
Modulation Bandwidth	20 kHz (small signal)
	5 kHz (large signal)
Insertion Loss	$<6 \mathrm{~dB}$ (when engaged)
Input	Rear Panel BNC connector High Impedance

mmW Frequency Coverage

Millimeter Wave Multipliers1-63850 series (Option 18 recommended for DC bias.)
63850 series external, waveguide output, multipliers are available for banded frequency coverage up to 325 GHz .

These external multipliers require at a minimum an MG3692B, with 20 GHz coverage. The output power required to drive the modules is +10 dBm . They can be powered up by an external power supply ($+12 \mathrm{Vdc}, 1.5 \mathrm{~A}$ typ.) using the supplied double banana power cord. It is recommended to purchase an MG3690B with option 18, which adds the capability to bias these modules without the need of an additional power supply. It adds a rear panel Twinax connector that supplies the proper DC bias for these modules, and a cable to power them up. Option 18 is not available with options 7 and 15.

63850 series multipliers have a saturated, unleveled, output power, yet their inherent flatness is exceptional. Modulating the input drive will indeed modulate the output, except for the case of Amplitude Modulation. Since the output is saturated, Amplitude Modulation is not recommended with these mmW modules. Frequency and Phase Modulation is possible, but the achieved deviation will be multiplied based on the multiplication factor of the module. Pulse modulation is also possible, with even sharper rise and fall times than the input. All modulation performances are not specified

For ease of operation, the MG3690B allows the user to enter a frequency scaling factor, the module's multiplication factor, which will be used only for purposes of displaying the proper frequency at the output of the mmW module, on the MG3690B's front panel display.

Multiplier p/n1	63850-15	63850-12	63850-10	63850-08	63850-06	63850-05	63850-03
Frequency	$50-75 \mathrm{GHz}$	$60-90 \mathrm{GHz}$	$75-110 \mathrm{GHz}$	$90-140 \mathrm{GHz}$	$110-170 \mathrm{GHz}$	140-220 GHz	$220-325 \mathrm{GHz}$
Waveguide Output	WR-15	WR-12	WR-10	WR-08	WR-06	WR-05	WR-03
Flange ${ }^{2}$	(008)	(009)	(010)	(M08)	(M06)	(M05)	(M03)
Output Power (typical)	$+8 \mathrm{dBm}$	+6 dBm	+5 dBm	-5 dBm	-13 dBm	-15 dBm ${ }^{3}$	-25 dBm ${ }^{4}$
Output Flatness (typ.) (Unleveled)	$\pm 2 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$	$\pm 3 \mathrm{~dB}$	-	-	-	-
Output Match	>12 dB	$>12 \mathrm{~dB}$	>12 dB	$>12 \mathrm{~dB}$	$>12 \mathrm{~dB}$	>12 dB	6 dB (typical)
Multiplication Factor (m)	x4	x6	x6	x8	x12	x12	x18
Input Frequency	12.5-18.75 GHz	$10.0-15.0 \mathrm{GHz}$	12.5-18.4 GHz	11.2-17.5 GHz	9.1-14.2 GHz	$11.6-18.4 \mathrm{GHz}$	12.2-18.1 GHz
Frequency Accuracy	(LO Synthesizer's Accuracy x m)						
Frequency Resolution	(LO Synthesizer's Resolution xm)						
Harmonics \& Spurious	-15 dBc (typ.)						
Input Power Required	+10 dBm						
RF Input Connector	SMA (female)						
DC Power	$12 \mathrm{Vdc}, 1.5 \mathrm{~A}$ (double banana power cord included) Option 18 is recommended on the synthesizer, to supply the necessary bias.						
Dimensions	$120 \mathrm{~mm} \times 110 \mathrm{~mm} \times 70 \mathrm{~mm}$ (not including feet or interfaces)						
Weight	$<1 \mathrm{~kg}$						
Temperature	$+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$						

[^0]
Inputs and Outputs

Input/Output Connectors		
Nomenclature	Type**	Location
EXT ALC IN	BNC	Rear Panel
RF OUTPUT* (Option 9)	Connector (female) fmax $\leq 40 \mathrm{GHz}$ \checkmark Connector (female) fmax $\geq 40 \mathrm{GHz}$	Standard-Front Panel Option 9-Rear Panel
10 MHz REF IN	BNC	Rear Panel
10 MHz REF OUT	BNC	Rear Panel
HORIZ OUT	BNC	Rear Panel
EFC IN	BNC	Rear Panel
AUX I/O	25 pin D-type	Rear Panel
SERIAL I/O	RJ45	Rear Panel
IEEE-488 GPIB	Type 57	Rear Panel
mmW/BIAS* (Option 18)	Twinax	Rear Panel
RF, LO, IF* (Option 7)	K Connector (female) 3 x	Rear Panel
PULSE TRIG IN (Option 26)	BNC	Rear Panel
PULSE SYNC OUT (Option 27)	BNC	Rear Panel
PULSE VIDEO OUT (Option 27)	BNC	Rear Panel
AM IN (Option 14)	BNC	Rear Panel
FM/ФM IN (Option 12)	BNC	Rear Panel
AM OUT (Option 27)	BNC	Rear Panel
FM/FM OUT (Option 27)	BNC	Rear Panel
SCAN MOD IN* (Option 20)	BNC	Rear Panel
POWER MONITOR IN* (Option 8)	Custom	Rear Panel

*Options (7 \& 18), (7 \& 20), (8 \& 9) are mutually exclusive, as they share the same rear panel space.
**Connectors may be available but not active, if option is not ordered.

MG3690B Rear Panel

EXT ALC IN

Provides for leveling the RF output signal externally with either a detector or power meter. Signal requirements are shown in the RF Output specifications.

RF OUTPUT

Provides for RF output from 50Ω source impedance. K Connector, female. Option 9 moves the RF Output connector to the rear panel.

10 MHz REF IN

Accepts an external $10 \mathrm{MHz} \pm 100 \mathrm{~Hz}, 0$ to +20 dBm time-base signal. Automatically disconnects the internal high-stability time-base option, if installed. 50Ω impedance.

10 MHz REF OUT

Provides a $1 \mathrm{Vp}-\mathrm{p}$, AC coupled, 10 MHz signal derived from the internal frequency standard. 50Ω impedance.

HORIZ OUT (Horizontal Sweep Output)

Provides 0 V at beginning and +10 V at end of sweep, regardless of sweep width. In CW mode, the voltage is proportional to frequency between OV at low end and +10 V at the high end of range. In CW mode, if CW RAMP is enabled, a repetitive, 0 V to +10 V ramp is provided.

EFC IN

Provides the capability to frequency modulate the internal crystal oscillator, allowing phase locking the synthesizer inside an external lock loop. Specifications on page 2.

AUX I/O (Auxiliary Input/Output)

Provides for most of the rear panel BNC connections through a single, 25 -pin, D type connector. Supports master-slave operation with another synthesizer or allows for a single-cable interface with the Model 56100A Scalar Network Analyzer and other Anritsu instruments. (see figure below)

SERIAL I/O (Serial Input/Output)

Provides access to RS-232 terminal ports to support service and calibration functions and master-slave operations.

IEEE-488 GPIB

Provides input/output connections for the General Purpose Interface Bus (GPIB).

mmW BIAS

Provides the bias for the external waveguide multipliers for coverage up to 325 GHz .

RF, LO, IF
Provides access to an internal IF up-conversion mixer, Option 7.

PULSE TRIG IN

Accepts an external TTL compatible signal to pulse modulate the RF output signal or to trigger or to gate the optional internal pulse generator. Available with Option 26, Pulse Modulation.

PULSE SYNC OUT

Provides a TTL compatible signal, synchronized to the internal pulse modulation output, Option 27.

PULSE VIDEO OUT

Provides a video modulating signal from the internal pulse generator, Option 27.

AM IN

Accepts an external signal to amplitude modulate the RF output signal, Option 14. 50Ω impedance.

FM/ФM IN

Accepts an external signal to frequency or phase modulate the RF output signal, Option 12.
50Ω impedance.

AM OUT

Provides the amplitude modulation waveform from the internal LF generator, Option 27.

FM/ФM OUT

Provides the frequency or phase modulation waveform from the internal LF generator, Option 27.

SCAN MOD IN

Accepts an external signal to scan modulate the RF output signal, Option 20. High Impedance.

POWER MONITOR IN

Accepts an external detector for power monitoring, Option 8.

Aux I/O pins:

1. Horizontal Output	14. V/GHz Output
2. Chassis Ground	15. End-of-Sweep Input
3. Sequential Sync Output	16. End-of-Sweep Output
4. Low Alternate Enable Output	17. -
5. Marker Output	18. Sweep Dwell Input
6. Retrace Blanking Output	19. -
7. Low Alternate Sweep Output	20. Bandswitch Blanking Output
8. Chassis Ground	21. Master Reset
9. -	22. Horizontal Sweep Input
10. Sweep Dwell Output	23. Horizontal Sweep Input Return
11. Lock Status Output	24. Chassis Ground
12. Penlift	25. Memory Sequencing Input
13. External Trigger Input	

14. V/GHz Output
15. End-of-Sweep Input
16. End-of-Sweep Output
.
Sweep Dwell Input

-

king Output

Horizontal Sweep Input
Horizontal Sweep Input Return
Chassis Ground
Memory Sequencing Input

Ordering Information

Models	
MG3691B	$2-10 \mathrm{GHz}$ Signal Generator
MG3692B	$2-20 \mathrm{GHz}$ Signal Generator
MG3693B	$2-30 \mathrm{GHz}$ Signal Generator
MG3694B	$2-40 \mathrm{GHz}$ Signal Generator
MG3695B	$2-50 \mathrm{GHz}$ Signal Generator
MG3696B	$2-67 \mathrm{GHz}$ Signal Generator (operational to 70 GHz$)$

Options and Accessories	
MG3690B/1A	Rack Mount with slides - Rack mount kit containing a set of track slides (90 degree tilt capability), mounting ears, and front panel handles to let the instrument be mounted in a standard 19-inch equipment rack.
MG3690B/1B	Rack Mount without slides - Modifies rack mounting hardware to install unit in a console that has mounting shelves. Includes mounting ears and front panel handles.
MG3690B/2X	Mechanical Step Attenuator - Adds a $10 \mathrm{~dB} /$ step attenuator. Rated RF output power is reduced. (This option comes in different versions, based on instrument configuration.)
MG3690B/2E	Electronic Step Attenuator - Adds a $10 \mathrm{~dB} /$ step electronic attenuator with a 120 dB range for the MG 3691 B . Rated RF output power is reduced. (Not available with Option 20 or 22.)
MG3690B/3	Ultra Low Phase Noise, main band - Adds new modules to significantly reduce SSB phase noise.
MG3690B/4	$10 \mathrm{MHz} \mathrm{to} \mathrm{2.2} \mathrm{GHz} \mathrm{RF} \mathrm{coverage}, \mathrm{Ultra-Low} \mathrm{Phase} \mathrm{Noise} \mathrm{version} \mathrm{-} \mathrm{Uses} \mathrm{a} \mathrm{digital} \mathrm{down} \mathrm{converter} \mathrm{to} \mathrm{significantly} \mathrm{reduce} \mathrm{SSB} \mathrm{phase} \mathrm{noise}$.
MG3690B/5	10 MHz to 2 GHz RF coverage - Uses an analog down converter.
MG3690B/6	Analog Sweep Capability - (limited to $\geq 500 \mathrm{MHz}$ when used with Option 4.)
MG3690B/7	IF Up-Conversion - Adds an internal 40 GHz mixer for up-converting an IF signal. (Not available with MG3695B, MG3696B, or with Options 18 or 20.)
MG3690B/8	Power Monitor - Adds internal power measurement capability. (Not available with Option 9.)
MG3690B/9X	Rear Panel Output - Moves the RF output connector to the rear panel. (This option comes in different versions, based on instrument configuration.) (Not available with Option 8.)
MG3690B/10	User-Defined Modulation Waveform Software - External software package provides the ability to download user-defined waveforms into the memory of the internal waveform generator, serially or via GPIB. External PC and an instrument with LF Generator, Option 27, are required.
MG3690B/12	Frequency and Phase Modulation - External, via a rear panel BNC connector. For internal modulation capability, requires additionally LF Generator, Option 27.
MG3690B/14	Amplitude Modulation - External, via a rear panel BNC connector. For internal modulation capability, requires additionally LF Generator, Option 27.
MG3690B/15X	High Power - Adds high-power RF components to the instrument to increase its output power level. (This option comes in different versions, based on instrument configuration, not available on MG3696B)
MG3690B/16	High Stability Time Base - Adds an ovenized, 10 MHz crystal oscillator as a high-stability time base.
MG3690B/17	Delete Front Panel - Deletes the front panel for use in remote control applications where a front panel display and keyboard control are not needed. (Only available with Options 1A or 1B)
MG3690B/18	mmW Bias Output - Adds a rear panel BNC Twinax connector required to bias the 63850 series millimeter wave source modules, sold separately. Includes DC bias cable. (Not available with Option 7 or 15 x)
MG3690B/20	Scan Modulation - Adds an internal Scan modulator for simulating high-depth amplitude modulated signals. Requires an external modulating signal input capability. (Not available on models MG3693B, MG3694B, MG3695B, MG3696B, or with Options 2E, 7, 15X, or 22.)
MG3690B/22	0.1 Hz to 10 MHz Audio coverage - Uses a DDS for coverage down to approximately DC . When adding Option 22 , the output power is derated by 2 dB . The frequency resolution below 10 MHz is 0.02 Hz . No modulation is available in the 0.1 Hz to 10 MHz band. (Not available without Option 4 or 5 , or with Option 20 or 2E)
MG3690B/26X*	Pulse Modulation - External, via a rear panel BNC connector. For internal modulation capability, requires additionally Pulse Generator, Option 27. (This option comes in different versions, based on instrument configuration.)
MG3690B/27	Internal LF and Pulse Generators - Provides modulation waveforms for internal AM, FM, ФM, and Pulse. (Not available without Option 12, 14, or 26 .)
MG3690B/28X*	Analog Modulation Suite - For ease of ordering and package pricing, this option bundles Options $12,14,26$ and 27 , offering internal and external AM, $F M, \Phi M$, and Pulse Modulation. (This option comes in different versions, based on instrument configuration.)
MG3690B/30	Low Phase Noise

[^1]
Millimeter Wave Accessories (Option 18 recommended for DC bias)

$63850-15$	$50-75 \mathrm{GHz}$ V band Multiplier Source Module, WR-15
$\mathbf{6 3 8 5 0 - 1 2}$	$60-90 \mathrm{GHz}$ E band Multiplier Source Module, WR-12
$\mathbf{6 3 8 5 0 - 1 0}$	$75-110 \mathrm{GHz}$ W band Multiplier Source Module, WR-10
$\mathbf{6 3 8 5 0 - 0 8}$	$90-140 \mathrm{GHz}$ F band Multiplier Source Module, WR-08
$\mathbf{6 3 8 5 0 - 0 6}$	$110-170 \mathrm{GHz}$ D band Multiplier Source Module, WR-06
$\mathbf{6 3 8 5 0 - 0 5}$	$140-220 \mathrm{GHz}$ G band Multiplier Source Module, WR-05
$\mathbf{6 3 8 5 0 - 0 3}$	$220-325 \mathrm{GHz}$ H band Multiplier Source Module, WR-03
$\mathbf{8 0 6 - 1 2 1}$	SMA male-male flexible cable, $90 \mathrm{~cm} \mathrm{(3} \mathrm{ft)} \mathrm{(could} \mathrm{be} \mathrm{used} \mathrm{to} \mathrm{connect} \mathrm{the} \mathrm{MG3690B} \mathrm{output} \mathrm{to} \mathrm{the} \mathrm{module's} \mathrm{LO} \mathrm{input)}$

Accessories	
34RKNF50	DC to 20 GHz , Ruggedized Type N female adapter for units with a K connector output
ND36329	MASTER/SLAVE interface cable set
$\mathbf{6 3 2 7 0}$	Transit case (16 kg, $66 \mathrm{~cm} \times 41 \mathrm{~cm} \times 81 \mathrm{~cm}$, roll-away on four wheels)
$\mathbf{2 3 0 0 - 4 6 9}$	IVI Driver, includes LabView® driver
$\mathbf{8 0 6 - 9 7}$	Aux I/O Cable, 25 pin to BNC: Provides BNC access to Aux I/O Data Lines: Sequential Sync, Marker Out, Bandswitch Blanking, Retrace Blanking, Sweep Dwell In, V/GHz, Horizontal Out.

[^2]MG3690B OPTION CONFIGURATION GUIDE - Important: Please see footnotes where applicable

MODELS	OPTIONS																
	OPT 1		OPT 2				$\begin{gathered} \text { OPT } \\ 3 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 4 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 5 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 6 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 7 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 8 \end{gathered}$	OPT 9		$\begin{gathered} \text { OPT } \\ 10 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 12 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 14 \end{gathered}$
	1A	1B	2A	2B	2C	2E							9K	9V			
MG3691B	\bullet	-	-			${ }^{\bullet} 9,11$	\bullet	- ${ }_{1}$	${ }^{\bullet} 1$	\bullet	${ }^{\bullet}$ 2,12	- 8	${ }^{\bullet} 8$		$\bullet 3$	-	-
MG3692B	\bullet	\bullet	-				\bullet	$\bullet{ }_{1}$	${ }^{\bullet} 1$	\bullet	${ }^{\bullet}$ 2,12	$\bullet 8$	${ }^{\bullet} 8$		${ }^{-}$	\bullet	\bullet
MG3693B	\bullet	\bullet		-			\bullet	${ }^{\bullet} 1$	${ }^{\bullet} 1$	\bullet	${ }^{\bullet}$ 2,12	${ }^{\circ} 8$	${ }^{\circ} 8$		\bullet_{3}	\bullet	\bullet
MG3694B	\bullet	\bullet		\bullet			\bullet	${ }^{\bullet}{ }_{1}$	${ }^{\bullet} 1$	\bullet	${ }^{\bullet}$ 2,12	${ }^{\circ} 8$	${ }^{\bullet} 8$		${ }^{\circ}$	\bullet	\bullet
MG3695B	\bullet	-			-		\bullet	${ }^{\bullet}{ }_{1}$	${ }^{\bullet} 1$	-		${ }^{\bullet} 8$		${ }^{\circ} 8$	${ }^{\bullet}$	-	-
MG3696B	-	\bullet			-		-	$\bullet{ }_{1}$	\bullet_{1}	\bullet		${ }^{\bullet} 8$		${ }^{\circ} 8$	\bullet_{3}	-	-

MODELS	OPTIONS																
	OPT 15				$\begin{gathered} \text { OPT } \\ 16 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 17 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 18 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 20 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 22 \end{gathered}$	OPT 26		$\begin{gathered} \text { OPT } \\ 27 \end{gathered}$	OPT 28		$\begin{gathered} \text { OPT } \\ 30 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 98 \end{gathered}$	$\begin{gathered} \text { OPT } \\ 99 \end{gathered}$
	15A	15B	15C	15D						26A	26B		28A	28B			
MG3691B	${ }^{\text {- }} 12$				\bullet	${ }^{\bullet} 10$	${ }^{\text {2,12 }}$	${ }^{\bullet}{ }_{9}$	${ }^{\text {5,11 }}$	\bullet		${ }^{\bullet}{ }_{6}$	${ }^{\bullet} 7$		-	-	\bullet
MG3692B	${ }^{\bullet} 12$				-	${ }^{\bullet} 10$	$\bullet_{2,12}$	-9	${ }^{\circ} 5$	-		$\bullet{ }_{6}$	${ }^{\bullet} 7$		-	\bullet	\bullet
MG3693B		${ }^{\bullet} 12$			\bullet	${ }^{\bullet} 10$	${ }^{\bullet}{ }_{2,12}$		${ }^{\circ} 5$	-		$\bullet 6$	${ }^{\bullet} 7$		\bullet	\bullet	\bullet
MG3694B		${ }^{\bullet}{ }_{12}$			\bullet	${ }^{\bullet} 10$	${ }^{\text {2,12 }}$		${ }^{\bullet} 5$		-	${ }^{\bullet}{ }_{6}$		${ }^{\bullet} 7$	-	-	-
MG3695B			${ }^{\bullet} 12$		\bullet	${ }^{\bullet} 10$	${ }^{\bullet} 12$		${ }^{\bullet} 5$		-	${ }^{\bullet} 6$		${ }^{\bullet} 7$	-	-	-
MG3696B				${ }^{\bullet} 12$	-	${ }^{\bullet} 10$	-		${ }^{\bullet} 5$		-	$\bullet{ }_{6}$		${ }^{\bullet} 7$	-	-	-

Footnote 1
Options 4 and 5 MAY NOT be ordered together
Footnote $2 \quad$ Options 7 and 18 MAY NOT be ordered together Options 7 and 20 MAY NOT be ordered together

Footnote 3 Option 10 MAY ONLY be ordered with either options 27 or 28
Footnote 5 Option 22 MAY ONLY be ordered with either options 4 or 5 Option 22 MAY NOT be ordered with Option 20

Footnote 6 Option 27 MAY ONLY be ordered with either options 12, 14 or 26 (in any combination)
Footnote 7 Option 28 MAY NOT be ordered along with either options 12, 14, 26, or 27
Footnote 8 Option 8 MAY NOT be ordered along with Option 9
Footnote $9 \quad$ Option 20 MAY NOT be ordered with Option 2E, Option 7, Option 15A or Option 22
Footnote 10 Option 17 MAY ONLY be ordered with either option 1A or 1B
Footnote 11 Option 2E MAY NOT be ordered with option 22
Footnote 12 Option 18 MAY NOT be ordered with option 15X or 7 Option 15 MAY NOT be ordered with option 20

Opt 1:	Rack Mount kits
Opt 2:	Step Attenuators
Opt 3:	Ultra Low Phase Noise
Opt 4:	RF Coverage, with DDC
Opt 5:	RF Coverage, with analog down conv.
Opt 6:	Analog Sweep Capability
Opt 7:	IF Up-Conversion
Opt 8:	Power Monitor
Opt 9:	Rear Panel RF Output
Opt 10:	User-defined Modulation Waveform Software
Opt 12:	External FM/PM modulation
Opt 14:	External AM modulation
Opt 15:	High Power output
Opt 16:	High Stability Time Base
Opt 17:	Delete front panel
Opt 18:	Mmw bias output
Opt 20:	Scan Modulation
Opt 22:	Audio Frequency coverage
Opt 26A:	Pulse modulation - For MG3691B, MG3692B, MG3696B
Opt 26B:	Pulse modulation - For MG3694B, MG3695B, MG3696B
Opt 27:	Internal LF and Pulse generators
Opt 28A:	Full Modulation Suite (opt 12,14,26A,27) for MG3691B, MG3692B, MG3693B
Opt 28B:	Full Modulation Suite (opt 12,14,26B,27) for MG3694B, MG3695B, MG3696B
Opt 30:	Low Phase Noise
Opt 98:	Z540 / Iso guide 25 cal
Opt 99:	Premium Cal

/inritsu

ANRITSU Corporation

5-1-1 Onna, Atsugi-shi, Kanagawa, 243-8555 Japan
Phone: +81-46-223-1111
Fax: +81-46-296-1264

- Australia

ANRITSU Pty Ltd
Unit 21/170 Ferntree Gully Road, Notting Hill
Victoria, 3168, Australia
Phone: +61-3-9558-8177
Fax: +61-3-9558-8255

- Brazil

ANRITSU Electrônica Ltda
Praca Amadeu Amaral, 27-1 andar
01327-010 - Paraiso, São Paulo, Brazil
Phone: $+55-11-3283-2511$
Fax: +55-11-3886940

- Canada

ANRITSU Electronics Ltd.
700 Silver Seven Road, Suite 120, Kanata
Ontario K2V 1C3, Canada
Phone: +1-613-591-2003
Fax: +1-613-591-1006

- Denmark

ANRITSU A/S

Kirkebjerg Allé 90 DK-2605 Brondby, Denmark
Phone: +45-72112200
Fax: +45-72112210

- Finland

ANRITSU AB

Teknobulevardi 3-5, FI-01530 Vantaa, Finland
Phone: +358-20-741-8100
Fax: +358-20-741-8111

- France

ANRITSU S.A
9, Avenue du Québec Z.A. de Courtaboeuf
91951 Les Ulis Cedex, France
Phone: +33-1-60-92-15-50
Fax: +33-1-64-46-10-65

- Germany

ANRITSU GmbH

Nemetschek Haus, Konrad-Zuse-Platz 1
81829 München, Germany
Phone: +49 (0) 89 442308-0
Fax: +49 (0) 89 442308-55

- India

ANRITSU Corporation
India Liaison Office
Unit No.S-3, Second Floor, Esteem Red Cross Bhavan,
No.26, Race Course Road, Bangalore 560001 India
Phone: +91-80-32944707
Fax: +91-80-22356648

- Italy

ANRITSU S.p.A.
Via Elio Vittorini, 129, 00144 Roma, Italy
Phone: +39-06-509-9711
Fax: +39-06-502-2425

- Korea

ANRITSU Corporation, Ltd.
8F Hyunjuk Bldg. 832-41, Yeoksam-Dong,
Kangnam-ku, Seoul, 135-080, Korea
Phone: +82-2-553-6603
Fax: +82-2-553-6604

- P. R. China (Beijing)

ANRITSU Company Ltd.
Beijing Representative Office
Room 1515, Beijing Fortune Building,
No. 5, Dong-San-Huan Bei Road,
Chao-Yang District, Beijing 100004, P.R. China
Phone: +86-10-6590-9230
Fax: +82-10-6590-9235

- P. R. China (Hong Kong)

ANRITSU Company Ltd

Suite 923, 9/F., Chinachem Golden Plaza, 77 Mody Road,
Tsimshatsui East, Kowloon, Hong Kong, P.R. China
Phone: +852-2301-4980
Fax: +852-2301-3545

- Singapore

ANRITSU Pte Ltd.
10, Hoe Chiang Road \#07-01/02, Keppel Towers
Singapore 089315
Phone: +65-6282-2400
Fax: +65-6282-2533

- Sweden

ANRITSU AB

Borgafjordsgatan 13, 16440 Kista, Sweden
Phone: +46-8-534-707-00
Fax: +46-8-534-707-30

- Taiwan

ANRITSU Company Inc.

7F, No. 316, Sec. 1, Neihu Rd., Taipei 114, Taiwan
Phone: +886-2-8751-1816
Fax: +886-2-8751-1817

- U.K.

ANRITSU EMEA Ltd.
200 Capability Green, Luton, Bedfordshire LU1 3LU, U.K.
Phone: +44-1582-433280
Fax: +44-1582-731303

- United Arab Emirates

ANRITSU EMEA Ltd.

Dubai Liaison Office

P O Box 500413 - Dubai Internet City
Al Thuraya Building, Tower 1, Suit 701, 7th Floor
Dubai, United Arab Emirates
Phone: +971-4-3670352
Fax: +971-4-3688460

- U.S.A.

ANRITSU Company
1155 East Collins Boulevard
Richardson, Texas 75081
Toll Free: 1-800-ANRITSU (267-4878)
Phone: +1-972-644-1777
Fax: +1-972-671-1877

[^0]: ${ }^{1}$ These mmW modules are produced by OML Inc. (Oleson Microwave Labs), co-located in Morgan Hill, Ca, with mutual collaborative experiences over many years.
 For detailed and up-to-date specifications, please call OML, Inc. or visit their website at www.oml-mmw.com.
 ${ }^{2}$ Waveguide output flanges are per MIL.F-3922/67B-(xxx)
 ${ }^{3}$ Power rolls off from -15 dBm at 200 GHz , to -25 dBm typical at 220 GHz .
 ${ }^{4}$ Output power is estimated.

[^1]: * Pulse Modulation performance is controlled by United States Export Control regulations, >31.8 GHz. For Pulse Modulation solutions that do not require export licenses, please consult with your Anritsu sales representative.

[^2]: Upgrades
 Economical upgrades are available to upgrade any model to any higher performing model. Consult Anritsu for details.

